Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 4, pp 1485–1491 | Cite as

Composition study of CoPt bimetallic nanocrystals of 2 nm

  • Arnaud DemortièreEmail author
  • Rémi Losno
  • Christophe Petit
  • Jean-Paul Quisefit
Original Paper

Abstract

The synthesis of bimetallic alloy nanocrystals with a well-controlled relative composition is a real challenge and requires chemical analysis techniques with high accuracy. A new chemical route has been used to synthesize cobalt–platinum nanocrystals of 2-nm diameter in a wide range of relative stoichiometry. A study of the elemental composition of the nanoalloy was carried out by X-ray fluorescence (XRF) spectroscopy and energy-dispersive X-ray analysis. We have developed a set-up for XRF analysis using a silicon wafer as a support to determine the elemental composition with only a small amount of sample. The calibration step and the measurement capabilities are described. In a composition range of 25–75% cobalt, the results of both analytical methods are discussed and compared in detail.

Keywords

CoPt nanoparticles Nanoparticle composition X-ray fluorescence spectroscopy Energy-dispersive X-ray analysis Nanoalloy Bimetallic nanocrystals 

Notes

Acknowledgement

The authors would like to express their gratitude to Dr. Anh-tu Ngo, LM2N (UMR 7070), Paris, France, for his work on the EDX analysis of nanocrystal samples.

References

  1. 1.
    Grundy PJ (1998) J Phys D Appl Phys 31:2975CrossRefGoogle Scholar
  2. 2.
    Sandhu A (2007) Nat Nanotechnol 2:746–748CrossRefGoogle Scholar
  3. 3.
    Snytnikov PV, Yusenko KV, Korenev SV, Shubin YV, Sobyanin VA (2007) Kinet Catal 48(2):276–281CrossRefGoogle Scholar
  4. 4.
    Demortière A, Launois P, Goubet N, Albouy PA, Petit C (2008) J Phys Chem B 112(46):14583–14592CrossRefGoogle Scholar
  5. 5.
    Wilcoxon J (2009) J Phys Chem B 113:2647–2656CrossRefGoogle Scholar
  6. 6.
    Weller D, Moser A (1999) IEEE Trans Mag 35(6):4423CrossRefGoogle Scholar
  7. 7.
    Sun X, Jia ZY, Huang YH, Harrel JW, Nikles DE, Sun K, Wang LM (2004) J Appl Phys 95:6747CrossRefGoogle Scholar
  8. 8.
    Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I (2007) Chem Mater 19:2389–2391CrossRefGoogle Scholar
  9. 9.
    Kim JH, Kim J, Oh N, Kim YH, Kim CK, Yoon CS, Jin S (2007) Appl Phys Lett 90:023117CrossRefGoogle Scholar
  10. 10.
    Kim J, Rong C, Lee Y, Liu JP, Sun S (2008) Chem Mater 20(23):7242–7245CrossRefGoogle Scholar
  11. 11.
    Valcárcel M, Simonet BM, Cárdenas S (2008) Anal Bioanal Chem 391:1881–1887CrossRefGoogle Scholar
  12. 12.
    Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108(3):847CrossRefGoogle Scholar
  13. 13.
    Sanchez SI, Small MW, Zuo JM, Nuzzo RG (2009) J Am Chem Soc 131(24):8683–8689CrossRefGoogle Scholar
  14. 14.
    Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Chem Mater 21(13):2825–2834CrossRefGoogle Scholar
  15. 15.
    Ouerghi A, Penuelas J, Andreazza-Vignolle C, Andreazza P, Bouet N, Estrade-Szwarckopf H (2006) J Appl Phys 100:124310CrossRefGoogle Scholar
  16. 16.
    Park JI, Kim MG, Jun YW, Lee JS, Lee WR, Cheon J (2004) J Am Chem Soc 126:9072CrossRefGoogle Scholar
  17. 17.
    Losno R, Bergametti G, Mouvier G (1987) Environ Technol Lett 8:77–87CrossRefGoogle Scholar
  18. 18.
    de Chateaubourg P, Quisefit JP, Garivait S, Steiner E, Goyon C (1993) Analusis 21:293–298Google Scholar
  19. 19.
    Petit C, Rusponi S, Brune H (2004) J Appl Phys 95:4251CrossRefGoogle Scholar
  20. 20.
    Lisiecki I, Parker D, Salzemann C, Pileni MP (2007) Chem Mater 19(16):4030–4036CrossRefGoogle Scholar
  21. 21.
    Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin Ö, Svedlindh P, Haase M, Weller H (2003) J Am Chem Soc 125(30):9090–9101CrossRefGoogle Scholar
  22. 22.
    Brust M, Bethell D, Schiffrin DJ, Kiely CJ (1995) Adv Mater 7:795CrossRefGoogle Scholar
  23. 23.
    Demortière A, Petit C (2007) Langmuir 23:8575–8584CrossRefGoogle Scholar
  24. 24.
    Quisefit JP, Garivait S, Losno R, Steiner E (1995) Nucleus 32:135–142Google Scholar
  25. 25.
    Nuspl M, Wegscheider W, Angeli J, Posch W, Mayr M (2004) Anal Bioanal Chem 379:640–645CrossRefGoogle Scholar
  26. 26.
    Cheng G, Guo T (2002) J Phys Chem B 106:5833–5839CrossRefGoogle Scholar
  27. 27.
    Speiser C, Baumann T, Niessner R (2001) J Anal Chem 370:752–759CrossRefGoogle Scholar
  28. 28.
    Quisefit JP, de Chateaubourg P, Garivait S, Steiner E (1994) X Ray Spectrom 23:59–64CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Arnaud Demortière
    • 1
    Email author
  • Rémi Losno
    • 2
  • Christophe Petit
    • 1
  • Jean-Paul Quisefit
    • 2
  1. 1.Laboratoire des Matériaux Mésoscopiques et NanométriquesUMR CNRS 7070, Université Pierre et Marie CurieParis Cedex 05France
  2. 2.Laboratoire Inter-Universitaire des Systèmes AtmosphériquesUMR CNRS 7583CréteilFrance

Personalised recommendations