Skip to main content

Advertisement

Log in

Critical aspects of biointerface design and their impact on biosensor development

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The stable integration of a biological recognition element on a transducing substrate surface is the single most important step in the creation of a high-functioning sensor surface. The key factors affecting biotic and abiotic functionalities at the biointerface are both chemical and physical. Understanding the interactions between biomolecules and surfaces, and their emergent complexity, is critical for biointerface implementation for sensing applications. In this overview, we highlight materials and methods typically used for biosensor development. Particular emphasis has been given to the experimental evaluation of biointerfacial properties and functionality. Promising research directions for application of biointerfaces to biosensing are suggested.

Correlation between nanoscale roughness, surface elemental composition, and functional bio-immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luong JHT, Male KB, Glennon JD (2008) Biotechnol Adv 26(5):492–500

    Article  CAS  Google Scholar 

  2. Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochim Acta 51(27):6025–6037

    Article  CAS  Google Scholar 

  3. Gupta R, Chaudhury NK (2007) Biosens Bioelectron 22(11):2387–2399

    Article  CAS  Google Scholar 

  4. Osborne MA, Barnes CL, Balasubramanian S, Klenerman D (2001) J Phys Chem B 105(15):3120–3126

    Article  CAS  Google Scholar 

  5. Neouze M-A, Schubert U (2008) Monatsch Chem 139(3):183–195

    Article  CAS  Google Scholar 

  6. Chen D, Wang G, Li J (2006) J Phys Chem C 111(6):2351–2367

    Article  Google Scholar 

  7. Plueddemann EP (ed) Silane coupling agents. 2nd ed. Plenum Press, New York, 1991

  8. Goddard JM, Hotchkiss JH (2007) Prog Polym Sci 32(7):698–725

    Article  CAS  Google Scholar 

  9. Lamb SB, Stuckey DC (2000) Enzyme Microb Technol 26(8):574–581

    Article  CAS  Google Scholar 

  10. Hynes RO (2002) Cell 110(6):673–687

    Article  CAS  Google Scholar 

  11. Cretich M, Pirri G, Damin F, Solinas I, Chiari M (2004) Anal Biochem 332(1):67–74

    Article  CAS  Google Scholar 

  12. Tuttle PV, Rundell AE, Webster TJ (2006) Int J Nanomedicine 1(4):497–505

    Article  CAS  Google Scholar 

  13. Chiari M, Cretich M, Corti A, Damin F, Pirri G, Longhi R (2005) Proteomics 5(14):3600–3603

    Article  CAS  Google Scholar 

  14. Renneberg R (2006) In: Demain AL (ed) Biotechnology for beginners. Berlin Heidelberg New York, Springer

    Google Scholar 

  15. Charles PT, Taitt CR, Goldman ER, Rangasammy JG, Stenger DA (2003) Langmuir 20(1):270–272

    Article  Google Scholar 

  16. Barsky VE, Kolchinsky AM, Lysov YP, Mirzabekov AD (2002) Mol Biol 36(4):437–455

    Article  CAS  Google Scholar 

  17. Sass H Jr, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) J Biomol NMR 18(4):303–309

    Article  CAS  Google Scholar 

  18. Lock EH, Walton SG, Fernsler RF (2009) Plasma Process Polym 6(4):234–245

    Article  CAS  Google Scholar 

  19. Walton SG, Muratore C, Leonhardt D, Fernsler RF, Blackwell DD, Meger RA (2004) Surf Coat Technol 186(1/2):40–46

    Article  CAS  Google Scholar 

  20. Sutherland DS, Broberg M, Nygren H, Kasemo B (2001) Macromol Biosci 1(6):270–273

    Article  CAS  Google Scholar 

  21. Andersson A-S, Bäckhed F, von Euler A, Richter-Dahlfors A, Sutherland D, Kasemo B (2003) Biomaterials 24(20):3427–3436

    Article  CAS  Google Scholar 

  22. Nicu L, Leichle T (2008) J Appl Phys 104(11):111101

    Article  Google Scholar 

  23. Kinge S, Crego-Calama M, Reinhoudt DN (2008) Chem Phys Chem 9(1):20–42

    CAS  Google Scholar 

  24. North SH, Lock EH, King TR, Franek JB, Walton SG, Taitt CR (2009) Anal Chem 82(1):406–412

    Article  Google Scholar 

  25. Castner DG, Ratner BD (2002) Surf Sci 500:28–60

    Article  CAS  Google Scholar 

  26. Garcia R, Magerle R, Perez R (2007) Nat Matters 6(6):405–411

    Article  CAS  Google Scholar 

  27. Müller DJ, Krieg M, Alsteens D, Dufrêne YF (2009) Curr Opin Biotechnol 20(1):4–13

    Article  Google Scholar 

  28. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Nat Matters 8(7):543–557

    Article  CAS  Google Scholar 

  29. Algar WR, Krull UJ (2009) Anal Chem 81(10):4113–4120

    Article  CAS  Google Scholar 

  30. Ebenstein Y, Gassman N, Kim S, Antelman J, Kim Y, Ho S, Samuel R, Michalet X, Weiss S (2009) Nano Lett 9(4):1598–1603

    Article  CAS  Google Scholar 

  31. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP, Roederer M (2006) Nat Med 12(8):972–977

    Article  CAS  Google Scholar 

  32. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Matters 4(6):435–446

    Article  CAS  Google Scholar 

  33. Algar WR, Krull UJ (2008) Langmuir 25(1):633–638

    Article  Google Scholar 

  34. Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Talanta 80(1):403–406

    Article  CAS  Google Scholar 

  35. Wang X, Liu L-H, Ramstrom O, Yan M (2009) Exp Biol Med 234(10):1128–1139

    Article  CAS  Google Scholar 

  36. Laurent N, Haddoub R, Flitsch SL (2008) Trends Biotechnol 26(6):328–337

    Article  CAS  Google Scholar 

  37. Cho EJ, Lee J-W, Rajendran M, Ellington AD (2008) In: Ligler FS, Taitt CR (eds) Optical biosensors: today and tomorrow. Amsterdam, Elsevier

    Google Scholar 

  38. Edwards KA, Baeumner AJ (2007) Talanta 71(1):365–372

    Article  CAS  Google Scholar 

  39. Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Biosens Bioelectron 22(11):2525–2531

    Article  CAS  Google Scholar 

  40. Knudsen SM, Lee J, Ellington AD, Savran CA (2006) J Am Chem Soc 128(50):15936–15937

    Article  CAS  Google Scholar 

  41. Bossi A, Bonini F, Turner AP, Piletsky SA (2007) Biosens Bioelectron 22(6):1131–1137

    Article  CAS  Google Scholar 

  42. Piletsky SA, Turner NW, Laitenberger P (2006) Med Eng Phys 28(10):971–977

    Article  Google Scholar 

  43. Boopathi M, Suryanarayana MVS, Nigam AK, Pandey P, Ganesan K, Singh B, Sekhar K (2006) Biosens Bioelectron 21(12):2339–2344

    Article  CAS  Google Scholar 

  44. Vandevelde F, Leichle T, Ayela Cd, Bergaud C, Nicu L, Haupt K (2007) Langmuir 23(12):6490–6493

  45. Shakeel S, Karim S, Ali A (2006) J Chem Technol Biotechnol 81:892–899

    Article  CAS  Google Scholar 

  46. Porcheddu A, Giacomelli G (2005) Curr Med Chem 12:2561–2599

    Article  CAS  Google Scholar 

  47. Ørum H, Wolter A, Kongsbak L (2003) Int J Peptide Res Ther 10(3):325–334

    Article  Google Scholar 

  48. Jepsen JS, Sørensen MD, Wengel J (2004) Oligonucleotides 14(2):130–146

    Article  CAS  Google Scholar 

  49. Arlinghaus HF, Ostrop M, Friedrichs O, Feldner J, Gunst U, Lipinsky D (2002) Surf Interface Anal 34(1):35–39

    Article  CAS  Google Scholar 

  50. Baker ES, Hong JW, Gaylord BS, Bazan GC, Bowers MT (2006) JACS 128(26):8484–8492

    Article  CAS  Google Scholar 

  51. Laschi S, Palchetti I, Marrazza G, Mascini M (2009) Bioelectrochemistry 76(1–2):214–220

    Article  CAS  Google Scholar 

  52. Breton F, Rouillon R, Piletska EV, Karim K, Guerreiro A, Chianella I, Piletsky SA (2007) Biosens Bioelectron 22(9–10):1948–1954

    Article  CAS  Google Scholar 

  53. Feldkamp U, Niemeyer CM (2006) Angew Chem Int Ed 45(12):1856–1876

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.H.N is a recipient of an American Society of Engineering Education postdoctoral fellowship. This work is funded by Joint Science and Technology Office for Chemical and Biological Defense/Defense Threat Reduction Agency and the Office of Naval Research. The views expressed here are those of the authors and do not represent the opinions of the US Navy, the US Department of Defense, or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris R. Taitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

North, S.H., Lock, E.H., Taitt, C.R. et al. Critical aspects of biointerface design and their impact on biosensor development. Anal Bioanal Chem 397, 925–933 (2010). https://doi.org/10.1007/s00216-010-3637-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3637-4

Keywords