Skip to main content
Log in

Comparison of the mass transfer in totally porous and superficially porous stationary phases in liquid chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The characterization of mass-transfer processes in a chromatographic column during a separation process is essential, since the influence of the mass-transfer kinetics on the shape of the chromatographic band profiles and on the efficiency of the separation is crucial. Several sources of mass transfer in a chromatographic bed have been identified and studied: the axial dispersion in the stream of mobile phase, the external mass-transfer resistance, intraparticle diffusion, and the kinetics of adsorption–desorption. We measured and compared the characteristics and performance of a new brand of shell particles and those of a conventional brand of totally porous silica particles. The shell stationary phase was made of 2.7-µm superficially porous particles (a 1.7-µm solid core is covered with a 0.5-µm-thick shell of porous silica). The other material consisted of totally porous particles of conventional 3.5-µm commercial silica. We measured the first and second central moments of the peaks of human insulin over a wide range of mobile phase velocities (from 0.02 to 1.3 mL/min) at 20°C. The plate height equations were constructed and the axial dispersion, external mass transfer, as well as the intraparticle diffusion coefficients were calculated for the two stationary phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mazzeo JR, Neue UD, Kele M, Plumb RS (2005) Anal Chem 77:460A

    Article  CAS  Google Scholar 

  2. Neue UD (1997) HPLC columns theory, technology, and practice. Wiley-VCH, New York

    Google Scholar 

  3. Ohmacht R, Kiss I (1996) Chromatographia 42:595

    Article  CAS  Google Scholar 

  4. Ohmacht R, Boros B, Kiss I, Jelinek L (1999) Chromatographia 50:75

    Article  CAS  Google Scholar 

  5. Afeyan NB, Fulton SP, Gordon NF, Loucks TL, Mazsaroff I, Varady L, Regnier FE (1990) J Chromatogr 519:1

    Article  CAS  Google Scholar 

  6. Horváth CG, Preiss BA, Lipsky SR (1967) Anal Chem 39:1422

    Article  Google Scholar 

  7. Horváth CG, Lipsky SR (1969) Anal Chem 41:1227

    Article  Google Scholar 

  8. Kirkland JJ (1969) Anal Chem 41:218

    Article  CAS  Google Scholar 

  9. Kirkland JJ (1992) Anal Chem 64:1239

    Article  CAS  Google Scholar 

  10. Cavazzini A, Gritti F, Kaczmarski K, Marchetti N, Guiochon G (2007) Anal Chem 79:5972

    Article  CAS  Google Scholar 

  11. Kučera E (1965) J Chromatogr 19:237

    Article  Google Scholar 

  12. Guiochon G, Felinger A, Shirazi DG, Katti AM (2006) Fundamentals of preparative and nonlinear chromatography, 2nd edn. Academic, Amsterdam

    Google Scholar 

  13. Kaczmarski K, Guiochon G (2007) Anal Chem 79:4648

    Article  CAS  Google Scholar 

  14. Gritti F, Guiochon G (2007) J Chromatogr A 1166:30

    Article  CAS  Google Scholar 

  15. McCalley DV (2008) J Chromatogr A 1193:85

    Article  CAS  Google Scholar 

  16. Gunn DJ (1987) Chem Eng Sci 42:363

    Article  CAS  Google Scholar 

  17. Miyabe K, Ando M, Ando N, Guiochon G (2008) J Chromatogr A 1210:60

    Article  CAS  Google Scholar 

  18. Wilson EJ, Geankopolis CJ (1966) Ind Eng Chem (Fundam) 5:9

    Article  CAS  Google Scholar 

  19. Young ME, Carroad PA, Bell RL (1980) Biotechnol Bioeng 22:947

    Article  CAS  Google Scholar 

  20. Giddings JC, Eyring H (1955) J Phys Chem 59:416

    Article  CAS  Google Scholar 

  21. Dondi F, Remelli MJ (1986) Phys Chem 90:1885

    Article  CAS  Google Scholar 

  22. Felinger A (2004) LC–GC North Am 22:642

    CAS  Google Scholar 

  23. Felinger A (2008) J Chromatogr A 1184:20

    Article  CAS  Google Scholar 

  24. Bacskay I, Felinger A (2009) J Chromatogr A 1216:1253

    Article  CAS  Google Scholar 

  25. Ohmacht R, Boros B (2000) Chromatographia 51:S205

    Article  CAS  Google Scholar 

  26. Felinger A, Boros B, Ohmacht R (2002) Chromatographia 56:S61

    Article  CAS  Google Scholar 

  27. Liu X, Zhou D, Szabelski P, Guiochon G (2003) Anal Chem 75:3999

    Article  CAS  Google Scholar 

  28. Liu X, Szabelski P, Kaczmarski K, Zhou D, Guiochon G (2003) J Chromatogr A 988:205

    Article  CAS  Google Scholar 

  29. Fallas MM, Neue UD, Hadley MR, McCalley DV (2008) J Chromatogr A 1209:195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants GVOP-3.2.1-0168, RET 008/2005, OTKA 75717, and OTKA-NKTH 68863.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Felinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, I., Bacskay, I., Kilár, F. et al. Comparison of the mass transfer in totally porous and superficially porous stationary phases in liquid chromatography. Anal Bioanal Chem 397, 1307–1314 (2010). https://doi.org/10.1007/s00216-010-3627-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3627-6

Keywords

Navigation