Skip to main content

Advertisement

Log in

Portable Raman monitoring of modern cleaning and consolidation operations of artworks on mineral supports

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Any restoration performed on cultural heritage artworks must guarantee a low impact on the treated surfaces. Although completely risk-free methods do not exist, the use of tailor-made procedures and the continuous monitoring by portable instrumentation is surely one of the best approaches to conduct a modern restoration process. In this work, a portable Raman monitoring, combined sometimes with spectroscopic techniques providing the elemental composition, is the key analysis technique in the three-step restoration protocol proposed: (a) in situ analysis of the surface to be treated (original composition and degradation products/pollutants) and the cleaning agents used as extractants, (b) the thermodynamic study of the species involved in the treatment in order to design a suitable restoration method and (c) application and monitoring of the treatment. Two cleaning operations based on new technologies were studied and applied to two artworks on mineral supports: a wall painting affected by nitrate impact, and a black crusted stone (chalk) altarpiece. Raman bands of nitrate and gypsum, respectively, decreased after the step-by-step operations in each case, which helped restorers to decide when the treatment was concluded, thus avoiding any further damage to the treated surface of the artworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martinez-Arkarazo I, Sarmiento A, Usobiaga A, Angulo M, Etxebarria N, Madariaga JM (2008) Talanta 75:511–516

    Article  CAS  Google Scholar 

  2. Colao F, Fantoni R, Lazic V, Morone A, Santagata A, Giardini A (2004) Appl Phys A Mater 79:213–219

    Article  CAS  Google Scholar 

  3. Armani E, Calcagno G, Menichelli C, Rosseti M (2000) J Cult Herit 1:S99–S104

    Article  Google Scholar 

  4. Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) App Environ Microb 72:3733–3737

    Article  CAS  Google Scholar 

  5. Carretti E, Rosi F, Miliani C, Dei L (2005) Spectrosc Lett 38:459–475

    Article  CAS  Google Scholar 

  6. Castellano A, Buccolieri G, Quarta S, Donativo M (2006) X-ray Spectrom 36:276–279

    Article  CAS  Google Scholar 

  7. Moropoulou A, Kefalonitou S (2002) Build Environ 37:1181–1191

    Article  Google Scholar 

  8. Appolonia L, Vaudan D, Chatel V, Aceto M, Mirti P (2009) Anal Bioanal Chem 395:2005–2013

    Article  CAS  Google Scholar 

  9. Martinez-Arkarazo I, Angulo M, Bartolomé L, Etxebarria N, Olazabal MA, Madariaga JM (2007) Anal Chim Acta 584:350–359

    Article  CAS  Google Scholar 

  10. Toniolo L, ZerbiCarlotta M, Bugini R (2009) Environ Sci Pollut R 16:218–226

    Article  CAS  Google Scholar 

  11. Vandenabeele P, Garcia-Moreno R, Mathis F, Leterme K, Van Elslande E, Hocquet FP, Rakkaa S, Laboury D, Moens L, Strivay D, Hartwig M (2009) Spectrochim Acta A 73:546–552

    Article  CAS  Google Scholar 

  12. Ancillotti L, Castellucci EM, Becucci M (2005) Advanced laser technologies 2004. In: Proceedings of SPIE—The International Society for Optical Engineering 5850. SPIE, Bellingham, Washington, pp 182–189. doi:10.1117/12.633539

  13. Sarzynski A, Skrzeczanowski W, Marczak J (2007) In: Nimmrichter J, Kautek W, Schreiner M (eds) Lasers in the conservation of artworks. Springer proceedings in physics 116. Springer, Heidelberg, pp 355–360

  14. Potgieter-Vermaak SS, Godoi RHM, Van Grieken R, Potgieter JH, Oujja M, Castillejo M (2005) Spectrochim Acta A 61:2460–2467

    Article  CAS  Google Scholar 

  15. Osticioli I, Mendes NFC, Porcinai S, Cagnini A, Castellucci E (2009) Anal Bioanal Chem 394(4):1033–1041

    Article  CAS  Google Scholar 

  16. Martinez-Arkarazo I, Smith DC, Zuloaga O, Olazabal MA, Madariaga JM (2008) J Raman Spectrosc 39:1018–1029

    Article  CAS  Google Scholar 

  17. Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM (2007) Anal Chim Acta 588:108–116

    Article  CAS  Google Scholar 

  18. Pérez-Alonso M, Castro K, Martinez-Arkarazo I, Angulo M, \Olazabal MA, Madariaga JM (2004) Anal Bioanal Chem 379:42–50

    Article  CAS  Google Scholar 

  19. Baglioni P, Dei L, Carretti E, Giorgi R (2009) Langmuir 25:8373–8374

    Article  CAS  Google Scholar 

  20. Carretti E, Dei L, Baglioni P (2002) Progr Colloid Polym Sci 119:280–283

    Google Scholar 

  21. Martinez-Arkarazo I, Sarmiento A, Angulo M, Fernández LA, Madariaga JM (2008) Solvent Extr Ion Exc 26:208–216

    Article  CAS  Google Scholar 

  22. Matteini M (2008) In: Lorusso S (ed) Conservation science in cultural heritage vol 8. Dipartimento di Storie e Metodi per la Conservazione dei Beni Culturali, Bologna, Italy

  23. Garcia-Garmilla F, Rodriguez-Maribona I, Can M, Zalbide M, Ibanez-Gomez JA, Osa-Chans E, Garin S (2002) Mater Constr (Madrid) 52:5–17

    Article  Google Scholar 

  24. Hansen E, Doehne E, Fidler J, Larson J, Martin B, Matteini M, Rodriguez-Navarro C, Pardo ES, Price C, de Tagle A, Teutonico JM, Weiss N (2003) Rev Conservation 4:13–25

    CAS  Google Scholar 

  25. Sarmiento A, Maguregui M, Martinez-Arkarazo I, Angulo M, Castro K, Olazabal MA, Fernández LA, Rodriguez-Laso MD, Mujika AM, Gómez J, Madariaga JM (2008) J Raman Spectrosc 39:1042–1049

    Article  CAS  Google Scholar 

  26. Saiz-Jimenez C (1997) Int Biodeter Biodegr 40:225–232

    Article  CAS  Google Scholar 

  27. Martinez-Arkarazo I, Angulo M, Usobiaga A, Fernandez LA, Madariaga JM (2006) In: Radic J, Rajcic V, Zarnic R (eds) Heritage protection. Construction aspects. Secon HDGK, Dubrovnik, Croatia

  28. Tiano P, Cantisani E, Sutherland I, Pager JM (2006) J Cult Herit 7:49–55

    Article  Google Scholar 

  29. Buscher CT, Donohoe RJ, Mecklenburg SL, Berg JM, Tait CD, Huchton KM, Morris DE (1999) Appl Spectrosc 53:943–953

    Article  CAS  Google Scholar 

  30. Selemenev VF, Zagorodni AA (1999) React Funct Polym 39:53–62

    Article  CAS  Google Scholar 

  31. Zagorodni AA, Kotova DL, Selemenev VF (2002) React Funct Polym 53:157–171

    Article  CAS  Google Scholar 

  32. De Santis A (2005) Polymer 46:5001–5004

    Article  CAS  Google Scholar 

  33. Maguregui M, Sarmiento A, Escribano R, Martinez-Arkarazo I, Castro K, Madariaga JM (2009) Anal Bioanal Chem 395:2119–2129

    Article  CAS  Google Scholar 

  34. Maguregui M, Sarmiento A, Martinez-Arkarazo I, Angulo M, Castro K, Arana G, Etxebarria N, Madariaga JM (2008) Anal Bioanal Chem 391:1361–1370

    Article  CAS  Google Scholar 

  35. Puigdomenech I (2009) Make equilibrium diagrams using sophisticated algorithms (MEDUSA). Inorganic Chemistry Department, The Royal Institute of Technology, Stockholm

  36. Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Fernández LA, Madariaga JM (2005) Anal Bioanal Chem 382:248–258

    Article  CAS  Google Scholar 

  37. Delegou ET, Avdelidis NP, Karaviti E, Moropoulou A (2008) X-Ray Spectrom 37:435–443

    Article  CAS  Google Scholar 

  38. Pearson CJ (2006) The complete guide to external wall insulation. Wellgarth, York

    Google Scholar 

  39. Moropoulou A, Bisbikou K, Torfs K, Van Grieken R, Zezza F, Macri F (1998) Atmos Environ 32:967–982

    Article  CAS  Google Scholar 

  40. Sabbioni C, Zappia G, Ghedini N, Gobbi G, Favoni O (1998) Atmos Environ 224:235–244

    Google Scholar 

  41. Maravelaki-Kalaitzaki P (2005) Anal Chim Acta 532:187–198

    Article  CAS  Google Scholar 

  42. Rose NL, Juggins S, Watt J (1999) Atmos Environ 33:2699–2713

    CAS  Google Scholar 

  43. Carrero JA, Goieneaga N, Barrutia O, Artetxe U, Arana G, Hernández A, Becerril JM, Madariaga JM (2009) In: Rauch S (ed) Highway and urban environment, alliance for global book series 17. Springer, Heidelberg

    Google Scholar 

  44. Martinez-Arkarazo I, Angulo M, Zuloaga O, Usobiaga A, Madariaga JM (2007) Spectrochim Acta A 68:1058–1064

    Article  CAS  Google Scholar 

  45. Ospitali F, Smith DC, Lorblanchet M (2006) J Raman Spectrosc 37:1063–1071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the projects PIETRA (ref UE05-A09), funded by the Basque Government through the Universidad-Empresa Programme and by IMDICOGU (ref: BIA2008-06592), funded by MICINN (the Science and Innovation Ministry of the Spanish Government). The authors gratefully acknowledge The Diocesan Museum of Sacred Art of Bilbao for the analysis carried out on the stone altarpiece of its property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Martínez-Arkarazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Arkarazo, I., Sarmiento, A., Maguregui, M. et al. Portable Raman monitoring of modern cleaning and consolidation operations of artworks on mineral supports. Anal Bioanal Chem 397, 2717–2725 (2010). https://doi.org/10.1007/s00216-010-3610-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3610-2

Keywords