Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 297–308 | Cite as

Capillary liquid chromatography with off-line mid-IR and Raman micro-spectroscopic detection: analysis of chlorinated pesticides at ppb levels

  • Sergio Armenta
  • Bernhard Lendl
Original Paper


A flow-through microdispenser was used as a solvent elimination interface, allowing vibrational spectroscopic detection in capillary liquid chromatography in addition to standard UV detection. Using a flow-through microdispenser, robust and stable deposition of picoliter-sized droplets on a CaF2 plate window was achieved. The CaF2 window was placed on a thermostated sample holder (80 °C) mounted on a computerized x, y stage for achieving fast solvent evaporation and enabling recording of the chromatogram as a trace of deposited material. The dried residues that were formed had diameters of a few tens of micrometers and were analysed by mid-IR and Raman micro-spectroscopy. Conditions were optimized for high sensitivity of measurement and maintaining chromatographic resolution during the deposition step. Due to the destruction-free character of Raman and FTIR spectroscopy, these techniques could be applied sequentially to interrogate the same deposits. To test the usefulness of the methodology for environmental analysis, the determination and unambiguous identification of chlorinated pesticides (chlortoluron, diuron, atrazine, and terbuthylazine) in river water was used as an example, obtaining limits of identification of 2 ng analyte on-column and precision of approximately 10% RSD. The application of the developed method to spiked real river samples demonstrated the identification power of the proposed method as, in addition to the four previously studied pesticides, two additional pesticides (simazine and isoproturon) could also be detected and identified.


HPLC IR spectroscopy Raman spectroscopy Pesticides 



The authors acknowledge Prof. E. Rosenberg and E. Fernandez-Diez for the scientific support. S. Armenta acknowledges the financial support provided by the Ministerio de Educación y Ciencia of Spain (Ref. EX2007-1257).


  1. 1.
    Sabo M, Gross J, Wang J, Rosenberg IE (1985) Anal Chem 57:1822CrossRefGoogle Scholar
  2. 2.
    Vonach R, Lendl B, Kellner R (1998) J Chromatogr A 824:159CrossRefGoogle Scholar
  3. 3.
    Schulte-Ladbeck R, Edelmann A, Quintas G, Lendl B, Karst U (2006) Anal Chem 78:8150CrossRefGoogle Scholar
  4. 4.
    Vonach R, Lendl B, Kellner R (1997) Anal Chem 69:4286CrossRefGoogle Scholar
  5. 5.
    Quintás G, Lendl B, Garrigues S, de la Guardia M (2008) J Chromatogr A 1190:102CrossRefGoogle Scholar
  6. 6.
    Kuligowski J, Quintas G, Garrigues S, de la Guardia M (2009) J Chromatogr A 1216:3122CrossRefGoogle Scholar
  7. 7.
    Quintas Q, Kuligowski J, Lendl B (2009) Appl Spec 63:1363Google Scholar
  8. 8.
    Quintás G, Kuligowski J, Lendl B (2009) Anal Chem 81:3746CrossRefGoogle Scholar
  9. 9.
    Nguyen Hong TD, Jouan M, Quy Dao N, Bouraly M, Mantisi F (1996) J Chromatogr A 743:323CrossRefGoogle Scholar
  10. 10.
    Dijkstra RJ, Slooten CJ, Stortelder A, Buijs JB, Ariese F, Brinkman UAT, Gooijer C (2001) J Chromatogr A 918:25CrossRefGoogle Scholar
  11. 11.
    Jansen JAJ (1990) Fresenius' J Anal Chem 337:398CrossRefGoogle Scholar
  12. 12.
    Mottaleb MM, Cooksey BG, Littlejohn D (1997) Fresenius' J Anal Chem 358:536CrossRefGoogle Scholar
  13. 13.
    Venkateshwaran TG, Stewart JT, Bishop RT, de Haseth JA, Bartlett MG (1998) J Pharm Biomed Anal 17:57CrossRefGoogle Scholar
  14. 14.
    Raynor MW, Bartle KD, Cook BW (1992) J High Resolut Chromatogr 15:361CrossRefGoogle Scholar
  15. 15.
    Lange AJ, Griffiths PR, Fraser DJJ (1991) Anal Chem 63:782CrossRefGoogle Scholar
  16. 16.
    Dekmezian AH, Morioka T (1989) Anal Chem 61:458CrossRefGoogle Scholar
  17. 17.
    Laurell T, Wallman L, Nilsson J (1999) J Micromech Microeng 9:369CrossRefGoogle Scholar
  18. 18.
    Haberkorn M, Frank J, Harasek M, Nilsson J, Laurell T, Lendl B (2002) Appl Spectrosc 56:902CrossRefGoogle Scholar
  19. 19.
    Surowiec I, Baena JR, Frank J, Laurell T, Nilsson J, Trojanowicz M, Lendl B (2005) J Chromatogr A 1080:132CrossRefGoogle Scholar
  20. 20.
    Somsen GW, Jagt I, Gooijer C, Velthorst NH, Brinkman UATh, Visser T (1996) J Chromatogr A 756:145CrossRefGoogle Scholar
  21. 21.
    Miliotis T, Kjellström S, Önnerfjord P, Nilsson J, Laurell T, Edholm LE, Marko-Varga G (2000) J Chromatogr A 886:99CrossRefGoogle Scholar
  22. 22.
    Kinugasa S, Tanabe K, Tamura T, IR Spectral Database for Organic Compounds (SDBS) National Institute of Advanced Industrial Science and Technology (AIST), Japan, 2004,
  23. 23.
    Manolikar MK, Sawant MR (2003) Chemosphere 51:811CrossRefGoogle Scholar
  24. 24.
    Cruz-Guzman M, Celis R, Hermosin MC, Cornejo J (2004) Environ Sci Technol 38:180CrossRefGoogle Scholar
  25. 25.
    Wanzenböck HD, Mizaikoff B, Weissenbacher N, Kellner R (1998) Fresenius' J Anal Chem 362:15CrossRefGoogle Scholar
  26. 26.
    Larmour IA, Gray JPED, Bell SEJ (2009) Spectrosc Eur 21(3):6Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Chemical Technologies and Analytics, Vienna University of TechnologyViennaAustria

Personalised recommendations