Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 109–114 | Cite as

Fluctuation in the ergosterol and deoxynivalenol content in barley and malt during malting process

  • Vlastimil Dohnal
  • Alena Jezkova
  • Lucie Pavlikova
  • Kamil Musilek
  • Daniel Jun
  • Kamil Kuca
Original Paper


This paper describes determination of the deoxynivalenol and ergosterol in samples from different varieties of barley and, consequently, malt produced from this barley. In total, 20 samples of barley and 20 samples of barley malt were analyzed. The alkaline hydrolysis with consequent extraction into hexane was applied to obtain the ergosterol from cereals. Extraction to acetonitrile/water and subsequent solid-phase extraction (SPE) were used for deoxynivalenol. The determination of the samples was performed on high-performance liquid chromatography using UV detection (ergosterol) and mass spectrometric detection (deoxynivalenol). The influence of the malting process on the production of two compounds of interest was assessed from obtained results. Ergosterol concentration ranged 0.88–15.87 mg/kg in barley and 2.63–34.96 mg/kg in malt, where its content increased to 95% compared to samples before malting. The malting process was observed as having a significant effect on ergosterol concentration (P = 0.07). The maximum concentration of deoxynivalenol was found to be 641 µg/kg in barley and 499 µg/kg in malt. Its concentration was lower than the legislative limit for unprocessed cereals (1,250 µg/kg). The statistic effect of the malting process on deoxynivalenol production was not found. Linear correlation between ergosterol and deoxynivalenol content was found to be very low (barley R = 0.02, malt R = 0.01). The results revealed that it is not possible to consider the ergosterol content as the indicator of deoxynivalenol contamination of naturally molded samples.


Ergosterol Deoxynivalenol Barley Malt Mold 


  1. 1.
    Váňová M, Hajšlová J, Havlová P, Matušinsky P, Lancová K, Spitzerová D (2004) Effect of spring barley protection on the production of Fusarium spp. mycotoxins in grain and malt using fungicides in field trials. Plant Soil Environ 50:447–455CrossRefGoogle Scholar
  2. 2.
    Jouany JP (2007) Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Sci Tech 137:342–362CrossRefGoogle Scholar
  3. 3.
    Klem K, Váňová M, Hajšlová J, Lancová K, Sehnalová M (2007) A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant Soil Environ 53:421–429Google Scholar
  4. 4.
    Váňová M (2006) Fusária v klasech jarního ječmene, Book of abstracts „Úspěšné plodiny pro velký trh“—Ječmen a cukrovka, 13.-17.2. 2006Google Scholar
  5. 5.
    Raus A (2007) Caramba—specialista na klasové fuzariózy. Agrotip 6:14–15Google Scholar
  6. 6.
    Malíř F, Ostrý V (2003) Vláknité mikromycety (plísně), mykotoxiny a zdraví člověka. NCO NZO BRNO, 349 s., ISBN 80-70133-98-3Google Scholar
  7. 7.
    Abramson D, Gan Z, Clear RM, Gilbert J, Marquardt RR (1998) Relationships among deoxynivalenol, ergosterol and Fusarium exoantigens in Canadian hard and soft wheat. Int J of Food Microbiol 45:217–224CrossRefGoogle Scholar
  8. 8.
    Kuiper-Goodman T (2004) Risk assessment and risk management of mycotoxins in food. In: Magan N, Olsen M (eds) Mycotoxins in food—detection and control. Woodhead, p 11. ISBN 18-55737-33-7Google Scholar
  9. 9.
    Lopez Diaz TM, Flannigan B (1997) Production of patulin and cytochalasin E by Aspergillus clavatus during malting of barley and wheat. Int J Food Microbiol 35:129–136CrossRefGoogle Scholar
  10. 10.
    Varga M, Bartók T, Mesterházy Á (2006) Determination of ergosterol in Fusarium-infected wheat by liquid chromatography–atmospheric pressure photoionization mass spectrometry. J Chromatogr A 1103:278–283CrossRefGoogle Scholar
  11. 11.
    Saxena J, Munimbazi C, Bullerman LB (2001) Relationship of mould count, ergosterol and ochratoxin A production. Int J Food Microbiol 71:29–34CrossRefGoogle Scholar
  12. 12.
    Seitz LM, Mohr H, Burroughs R, Sauer D (1977) Ergosterol as an indicator of fungal invasion in grains. Cereal Chem 54:1207–1217Google Scholar
  13. 13.
    Psota V, Skulilová Z, Hartmann J (2009) The effect of the barley variety, location and year crop on the haze of congress wort. Czech J Food Sci 27:158–164Google Scholar
  14. 14.
    Jedličková L (2007) Determination of trichothecene mycotoxins in barley and malt. Diploma thesis. Masaryk University, Brno, Czech RepublicGoogle Scholar
  15. 15.
    Dohnal V, Kaderová I, Ježková A, Skládanka J (2007) Obsah ergosterolu u vybraných druhů trav na konci vegetačního období. Acta universitatis agriculturae Mendelianae Brunensis 55:9–14CrossRefGoogle Scholar
  16. 16.
    Ježková A, Žďárová Karasová J, Dohnal V, Polišenská I (2009) Development of solid-phase extraction and HPLC/MS methods for deoxynivalenol determination in barley and malt. Chem Listy 103:679–683Google Scholar
  17. 17.
    Cahagnier B, Lesage L, Richard-Molard D (1991) Microbiological quality of grains and ergosterol content. Proceed ings of the Fifth International Working Conference on Stored-Product Protection, vol. I. INRA, Bordeaux, pp 261–276Google Scholar
  18. 18.
    Tothill IE, Harris D, Magan N (1992) The relationship between fungal growth and ergosterol content of wheat grain. Mycol Res 96:965–970CrossRefGoogle Scholar
  19. 19.
    Schwarz P, Casper H, Beattie S (1995) Fate and development of naturally occurring Fusarium mycotoxins during malting and brewing. J Am Soc Brew Chem 53:121–127Google Scholar
  20. 20.
    Laitila A (2007) Microbes in the tailoring of barley malt properties. Academic dissertation in Microbiology,, downloaded December 12th 2007
  21. 21.
    Sarlin T, Nakari-Setala T, Linder M, Penttila M, Haikara A (2005) Fungal hydrophobins as predictors of the gushing activity of malt. J Inst Brew 111:105–111CrossRefGoogle Scholar
  22. 22.
    Sypecká Z, Havlová P, Nevrklová M (2003) Stanovení deoxynivalenolu (DON) ve sladu vyrobeném z ječmenů cíleně infikovaných izoláty Fusarium spp. 1.Sledování vlivu DON na gushing a další kvalitativní parametry sladu. Kvasný průmysl 49:146Google Scholar
  23. 23.
    Havlová P, Lancová K, Váňová M, Havel J, Hajšlová J (2006) The effect of fungicidal treatment on selected quality parameters of barley and malt. J Agric Food Chem 54:1353–1360CrossRefGoogle Scholar
  24. 24.
    Wolf-Hall CE (2007) Mold and mycotoxin problems encountered during malting and brewing. Int J Food Microbiol 119:89–94CrossRefGoogle Scholar
  25. 25.
    Janardhana GR, Raveesha KA, Shetty HS (1999) Mycotoxin contamination of maize grains grown in Karnataka (India). Food Chem Toxicol 37:863–868CrossRefGoogle Scholar
  26. 26.
    Perkowski J, Miedaner T, Geiger HH, Muller H-M, Chelkowski J (1995) Occurrence of deoxynivalenol (DON), 3-acetyl-DON, zearalenone, and ergosterol in winter rye inoculated with Fusarium culmorum. Cereal Chem 72:205–209Google Scholar
  27. 27.
    Sweeney M, Dobson A (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 43:141–158CrossRefGoogle Scholar
  28. 28.
    Koubová D (2006) Fuzária v zrnu obilovin—fakta a dezinformace,, downloaded July 15th 2008
  29. 29.
    Miller JD, Arnison PG (1986) Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana. Can J Plant Pathol 8:147–150CrossRefGoogle Scholar
  30. 30.
    Gourama H, Bullerman LB (1995) Relationship between growth as measured aflatoxin production and mold by ergosterol and plate count. Lebensm-Wiss u-Technol 28:185–189CrossRefGoogle Scholar
  31. 31.
    Anonym (2006) Commission Regulation (EC) 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Available on, February 1st, 2010

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Vlastimil Dohnal
    • 1
    • 2
  • Alena Jezkova
    • 3
  • Lucie Pavlikova
    • 3
  • Kamil Musilek
    • 1
    • 2
  • Daniel Jun
    • 1
    • 4
  • Kamil Kuca
    • 1
    • 2
    • 4
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of J.E. Purkynje in Usti nad LabemUsti nad LabemCzech Republic
  2. 2.Department of Toxicology, Faculty of Military HealthUniversity of DefenceHradec KraloveCzech Republic
  3. 3.Department of Food Technology, Faculty of AgronomyMendel University of Agriculture and Forestry in BrnoBrnoCzech Republic
  4. 4.Center of Advanced Studies, Faculty of Military Health SciencesUniversity of DefenceHradec KraloveCzech Republic

Personalised recommendations