Skip to main content
Log in

Temporal dynamics of receptor-induced apoptosis in an affinity microdevice

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The temporal dynamics of Fas-induced apoptosis is elucidated. Jurkat cells are captured on the affinity surface of a microdevice coated with anti-CD95, an antibody known to induce apoptosis in cells via the extrinsic (caspase 8) pathway. The timing of apoptosis induction is controlled by the binding of the cells to the surface. Once bound, the cells are continuously stained with the caspase probe, l-bisaspartic acid rhodamine 110 (D2R), and the fluorescence of the cells was monitored for 6 h by light microscopy. This approach normalizes the temporal dynamics for each cell, as the binding event is also the start of apoptosis. In addition to providing the number of apoptotic cells over time, the fluorescence of individual cells can be monitored, providing information about the timing of caspase activity in each cell. The rate of caspase cleavage of D2R in each cell is also measured and shows good agreement between the cells in a given population. The effects of the caspase inhibitor, z-VAD-FMK, on the timing of caspase activity are also investigated and are shown to dramatically slow the apoptotic process. In the future, other caspase probes could be used to provide additional information about the temporal dynamics of caspase activation. Additional techniques, such as fluorescence correlation spectroscopy, can be coupled to these methods to provide faster temporal response and help to elucidate the heterogeneity of the apoptosis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoshinori O, Zhonglian L, Masa-Ai S (2003) J Hisochem Cytochem 38:275–340

    Article  Google Scholar 

  2. Gill C, Mestril R, Samali A (2002) FASEB J 16:135–146

    Article  CAS  Google Scholar 

  3. Dupont-Versteegden EE, McCarter RJ, Katz MS (1994) J Appl Physiol 77:1736–1741

    CAS  Google Scholar 

  4. Fadeel B, Orrenius S (2005) J Intern Med 258:479–517

    Article  CAS  Google Scholar 

  5. Elmore S (2007) Toxicol Pathol 35:495–516

    Article  CAS  Google Scholar 

  6. Fuentes-Prior P, Salvesen GS (2004) Biochem J 384:201–232

    Article  CAS  Google Scholar 

  7. Dobrucki J, Darzynkiewicz Z (2001) Micron 32:645–652

    Article  CAS  Google Scholar 

  8. Harding CL, Lloyd DR, McFarlande CM, Al-Rubeai M (2002) Biotechnol Prog 16:800–802

    Article  Google Scholar 

  9. Asselbergs FAM, Widmer R (2003) Anal Biochem 318:221–229

    Article  CAS  Google Scholar 

  10. Fujii J, Matsui T, Heatherly DP, Schelgel KH, Lobo PI, Yutsude T, Ciraolo GM, Morris RE, Obrig T (2003) Infect Immun 71:2724–2735

    Article  CAS  Google Scholar 

  11. Vashishtha SC, Nazarali AJ, Dimmock JR (1998) Cell Mol Neurobiol 18:437–445

    Article  CAS  Google Scholar 

  12. Katsikis PD, Wunderlich ES, Smith CA, Herzenberg LA (1995) J Exp Med 181:2029–2036

    Article  CAS  Google Scholar 

  13. Ramuz O, Isnardon D, Devilard E, Charafe-Jauffret E, Hassoun J, Birg F, Xerri L (2003) Int J Exp Path 84:75–81

    Article  Google Scholar 

  14. Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki M, Rosenzweig A, Martyn JAJ (2003) J Histochem Cytochem 51:873–885

    CAS  Google Scholar 

  15. Al-Gubory KH (2005) Exp Cell Res 310:474–481

    Article  CAS  Google Scholar 

  16. van Engeland M, Nicland LJW, Ramackers FCS, Schutte B, Reutelingsperger CPM (1998) Cytometry 31:1–9

    Article  Google Scholar 

  17. Junqi J, Yao SQ (2009) Org Lett 11:405–408

    Article  Google Scholar 

  18. Liu J, Bhalgat M, Zg C, Diwu Z, Hoyland B, Klaubert CH (1999) Bioorg Med Chem Lett 9:3231–3236

    Article  CAS  Google Scholar 

  19. Zhang H-Z, Kasibhatla S, Guastella J, Tseng B, Drewe J, Cai SZ (2003) Bioconjugate Chem 14:458–463

    Article  CAS  Google Scholar 

  20. Hug H, Los M, Hirt W, Debatin K-M (1999) Biochemistry 38:13906–13911

    Article  CAS  Google Scholar 

  21. Cai SX, Zhang H-Z, Guastella J, Drewe J, Yang W, Weber E (2001) Bioorg Med Chem Lett 11:39–42

    Article  CAS  Google Scholar 

  22. Bullok K, Piwnica-Worms D (2005) J Med Chem 48:5404–5407

    Article  CAS  Google Scholar 

  23. Bullok KE, Maxwell D, Kesarwala AH, Gammon S, Prior JL, Snow M, Stanley S, Piwnica-Worms D (2007) Biochemistry 46:4055–4065

    Article  CAS  Google Scholar 

  24. Gorman AM, Hirt UA, Zhivotovasky B, Orrenius S, Ceccatelli S (1999) J Immunol Methods 226:43–48

    Article  CAS  Google Scholar 

  25. Mack A, Furmann C, Hacker G (2000) J Immunol Methods 241:19–31

    Article  CAS  Google Scholar 

  26. Kasili PM, Song JM, Vo-Dinh T (2004) J Am Chem Soc 126:2799–2806

    Article  CAS  Google Scholar 

  27. Kihara T, Nakamura C, Suzuki M, Han S-W, Fukazawa K, Ishihara K (2009) J Miyake, Biosens Bioelectron 25:22–27

    Article  CAS  Google Scholar 

  28. Martinez MM, Reif RD, Pappas D (2010) Anal Bioanal Chem 396:1177–1185

    Article  CAS  Google Scholar 

  29. Wu G, Irvine J, Luft C, Pressley D, Hodge CN, Janzen B (2003) Combinatorial and High Throughput Screening 6:303–312

    CAS  Google Scholar 

  30. Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, ven den Berg A (2005) Lab on a Chip 5:49–55

    Article  CAS  Google Scholar 

  31. Reif RD, Martinez MM, Wang K, Pappas D (2009) Anal Bioanal Chem 395:787–785

    Article  CAS  Google Scholar 

  32. Jing R, Bolshakov VI, Flavell AJ (2007) Nat Protoc 2:168–177

    Article  CAS  Google Scholar 

  33. Wang K, Cometti B, Pappas D (2007) Anal Chim Acta 601:1–9

    Article  CAS  Google Scholar 

  34. Jeannot V, Salmon J-M, Deumie M, Viallet P (1997) J Histochem Cytochem 45:403–412

    CAS  Google Scholar 

  35. Wang K, Solis-Wever XM, Aguas C, Pappas D (2009) Anal Chem 81:3334–3343

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant from the Robert A. Welch Foundation (D-1667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Pappas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 813 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reif, R.D., Aguas, C., Martinez, M.M. et al. Temporal dynamics of receptor-induced apoptosis in an affinity microdevice. Anal Bioanal Chem 397, 3387–3396 (2010). https://doi.org/10.1007/s00216-010-3567-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3567-1

Keywords

Navigation