Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 309–317 | Cite as

GC-MS determination of polycyclic aromatic hydrocarbons evolved from pyrolysis of biomass

  • Daniele Fabbri
  • Alessio Adamiano
  • Cristian Torri
Original Paper

Abstract

A method for the determination of polycyclic aromatic hydrocarbons (PAHs) in liquid pyrolysate of biomass (bio-oil) was developed with attention to greenness along with accuracy. Bio-oil obtained from preparative pyrolysis at 500 °C of poplar wood as representative biomass matrix was dissolved into acetonitrile (ACN). An aliquot of the ACN solution (0.1 mg bio-oil) was added with water (20% v/v) and spiked with perdeuterated standards, then PAHs were extracted with n-hexane and separated from phenolic interferents by silica gel solid-phase extraction (SPE). All 16 priority PAHs were detected at concentrations between 7.7 µg g−1 (naphthalene) and 0.1 µg g−1 (benz[a]anthracene) with RSD in the 6–23% range. Recovery of perdeuterated acenaphthene, phenanthrene and chrysene was 84, 93 and 90%, respectively. Results obtained from the analysis of bio-oil were used to evaluate the performance of analytical pyrolysis conducted with a heated platinum filament in off-line configuration. Two sampling procedures were compared: (1) sorption onto silica gel followed by elution with n-hexane (Py-SPE), (2) dynamic solid-phase micro-extraction followed by fibre cleanup with aqueous ammonia (Py-SPME). Emission levels of priority PAHs could be determined by Py-SPE with RSD in the 13–45% range, while Py-SPME was unsatisfactory for quantitation. Emission levels determined by Py-SPE fell in the 6.4–0.1 µg g−1 range slightly higher than those calculated from bio-oil analysis. Both Py methods were adequate for screening purposes to assess the effect of catalysts on PAH formation. In particular, they agreed to show that the content of PAHs expected in bio-oil increased dramatically when pyrolysis was conducted over HZSM-5 zeolite.

Figure

PAHs in the pyrolysate of poplar wood: novel procedures of bio-oil analysis and analytical pyrolysis of biomass

Keywords

Biomass Fuel GC-MS Polycyclic aromatic compounds Pyrolysis 

References

  1. 1.
    Zhang Y, Tao S (2008) Atm Environ 43:812–819CrossRefGoogle Scholar
  2. 2.
    Oasmaa A, Meier D (2005) J Anal Appl Pyrolysis 73:323–334CrossRefGoogle Scholar
  3. 3.
    Cirad, Aston University, BFH, An assessment of bio-oil toxicity for safe handling and transportation, Final Technical Report, Part I, 2003 (available on-line at www.pyne.co.uk).
  4. 4.
    Pakdel H, Roy C (1991) Energ Fuel 5:427–436CrossRefGoogle Scholar
  5. 5.
    Williams PT, Horne PA (1995) J Anal Appl Pyrolysis 31:15–37CrossRefGoogle Scholar
  6. 6.
    Horne PA, Williams PT (1996) Fuel 75:1051–1059CrossRefGoogle Scholar
  7. 7.
    Padban N, Odenbrand I (1999) Energ Fuel 13:1067–1073CrossRefGoogle Scholar
  8. 8.
    Tsai WT, Mi HH, Chang YM, Yang SY, Chang JH (2007) Bioresour Technol 98:1133–1137CrossRefGoogle Scholar
  9. 9.
    Fabbri D, Vassura I (2006) J Anal Appl Pyrolysis 75:150–158CrossRefGoogle Scholar
  10. 10.
    Fabbri D, Bevoni V, Notari M, Rivetti F (2007) Fuel 86:690–697CrossRefGoogle Scholar
  11. 11.
    Cai J, Wang S, Su Q (2008) Chromatographia 68:357–363CrossRefGoogle Scholar
  12. 12.
    Herring AM, McKinnon JT, Gneshin KW, Pavelka R, Petrick DE, McCloskey BD, Filley J (2004) Fuel 83:1483–1494CrossRefGoogle Scholar
  13. 13.
    Lee GJ, Shin EJ, Pavelka RA, Kirchner MS, Dounas-Frazer D, McCloskey BD, Petrick DE, McKinnon JT, Herring AM (2008) Energ Fuel 22:2816–2825CrossRefGoogle Scholar
  14. 14.
    Sharma RK, Hajaligol MR (2003) J Anal Appl Pyrolysis 66:123–144CrossRefGoogle Scholar
  15. 15.
    McGrath TE, Chan WE, Hajaligol MR (2003) J Anal Appl Pyrolysis 66:51–70CrossRefGoogle Scholar
  16. 16.
    Garcia AN, Mar Esperanza M, Font R (2003) J Anal Appl Pyrolysis 68–69:577–598CrossRefGoogle Scholar
  17. 17.
    Namiesnik J (2001) J Sep Sci 24:151–153CrossRefGoogle Scholar
  18. 18.
    Keith LH, Gron LU, Young JL (2007) Chem Rev 107:2695–2708CrossRefGoogle Scholar
  19. 19.
    Armenta S, Garrigues S, de la Guardia M (2008) TRAC, Trends Anal Chem 27:497–511CrossRefGoogle Scholar
  20. 20.
    Capello C, Fisher U, Hungerbuhler K (2007) Green Chem 9:927–934CrossRefGoogle Scholar
  21. 21.
    Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Mark S (2008) Green Chem 10:31–36CrossRefGoogle Scholar
  22. 22.
    Fabbri D, Torri C, Mancini I (2007) Green Chem 9:1374–1379CrossRefGoogle Scholar
  23. 23.
    Torri C, Fabbri D (2009) Microchem J 93(2009):133–139CrossRefGoogle Scholar
  24. 24.
    Lee ML, Vassilaros DL, White CM, Novotny M (1979) Anal Chem 51:768–773CrossRefGoogle Scholar
  25. 25.
    Perez Pavon JL, del Nogal Sanchez M, Fernandez Laespada ME, Moreno Cordero B (2008) J Chromatogr A 1202:196–202CrossRefGoogle Scholar
  26. 26.
    Marr LC, Kirchstetter TW, Harley RA, Miguel AH, Hering SV, Hammond SK (1999) Environ Sci Technol 33:3091–3099CrossRefGoogle Scholar
  27. 27.
    Zoccolillo L, Babi D, Felli M (2000) Chromatographia 52:373–376CrossRefGoogle Scholar
  28. 28.
    Carlson TR, Vispute TP, Huber GW (2008) ChemSusChem 1:397–400CrossRefGoogle Scholar
  29. 29.
    Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Top Catal 52:241–252CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Daniele Fabbri
    • 1
  • Alessio Adamiano
    • 1
  • Cristian Torri
    • 1
  1. 1.Laboratorio di Scienze Ambientali “R. Sartori”, Centro Interdipartimentale di Ricerca in Scienze Ambientali (C.I.R.S.A.)Università di BolognaRavennaItaly

Personalised recommendations