Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: application to the determination of riboflavin in foodstuffs

Abstract

In the present work, it is proposed, for the first time, an on-line automatic renewable molecularly imprinted solid-phase extraction (MISPE) protocol for sample preparation prior to liquid chromatographic analysis. The automatic microscale procedure was based on the bead injection (BI) concept under the lab-on-valve (LOV) format, using a multisyringe burette as propulsion unit for handling solutions and suspensions. A high precision on handling the suspensions containing irregularly shaped molecularly imprinted polymer (MIP) particles was attained, enabling the use of commercial MIP as renewable sorbent. The features of the proposed BI-LOV manifold also allowed a strict control of the different steps within the extraction protocol, which are essential for promoting selective interactions in the cavities of the MIP. By using this on-line method, it was possible to extract and quantify riboflavin from different foodstuff samples in the range between 0.450 and 5.00 mg L−1 after processing 1,000 µL of sample (infant milk, pig liver extract, and energy drink) without any prior treatment. For milk samples, LOD and LOQ values were 0.05 and 0.17 mg L−1, respectively. The method was successfully applied to the analysis of two certified reference materials (NIST 1846 and BCR 487) with high precision (RSD < 5.5%). Considering the downscale and simplification of the sample preparation protocol and the simultaneous performance of extraction and chromatographic assays, a cost-effective and enhanced throughput (six determinations per hour) methodology for determination of riboflavin in foodstuff samples is deployed here.

Schematic representation of the manifold for determination of riboflavin in foodstuff. LOV lab-on-valve, MS multisyringe, HPLC high-performance liquid chromatography, Si syringe, Vi three-way commutation valve ( position off, solid line position on), A air, CS conditioning solvent (50% (v/v) MeOH/H2O), BS bead suspension in conditioning solvent, C carrier solution (H2O), D diluent (H2O), W waste, CC central channel, EL eluent (50% (v/v) MeOH/H2O+1% (v/v) CH3COOH), B channel for bead discarding, Sa sample/standard solution, HC holding coil, L1 connection tubing (8 cm), L2 connection tubing (44 cm), P chromatographic pump, IV injection valve, MC monolithic chromatographic column, λ diode array detector

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Chen Y, Guo ZP, Wang XY, Qiu CG (2008) J Chromatogr A 1184:191–219

    CAS  Article  Google Scholar 

  2. 2.

    Hyötyläinen T (2009) Anal Bioanal Chem 394:743–758

    Article  Google Scholar 

  3. 3.

    Pichon V (2007) J Chromatogr A 1152:41–53

    CAS  Article  Google Scholar 

  4. 4.

    He CY, Long YY, Pan JL, Li K, Liu F (2007) J Biochem Biophys Methods 70:133–150

    CAS  Article  Google Scholar 

  5. 5.

    Mahony JO, Nolan K, Smyth MR, Mizaikoff B (2005) Anal Chim Acta 534:31–39

    CAS  Article  Google Scholar 

  6. 6.

    Sellergren B (1994) Anal Chem 66:1578–1582

    CAS  Article  Google Scholar 

  7. 7.

    Theodoridis G, Manesiotis P (2002) J Chromatogr A 948:163–169

    CAS  Article  Google Scholar 

  8. 8.

    Pichon V, Haupt K (2006) J Liq Chromatogr Relat Technol 29:989–1023

    CAS  Article  Google Scholar 

  9. 9.

    Manesiotis P, Hall AJ, Courtois J, Irgum K, Sellergren B (2005) Angewandte Chem-Intern Ed 44:3902–3906

    CAS  Article  Google Scholar 

  10. 10.

    Hyötyläinen T (2007) J Chromatogr A 1153:14–28

    Article  Google Scholar 

  11. 11.

    Dias ACB, Figueiredo EC, Grassi V, Zagatto EAG, Arruda MAZ (2008) Talanta 76:988–996

    CAS  Article  Google Scholar 

  12. 12.

    Theodoridis GA, Zacharis CK, Voulgaropoulos AN (2007) J Biochem Biophys Methods 70:243–252

    CAS  Article  Google Scholar 

  13. 13.

    Ruzicka J (2000) Analyst 125:1053–1060

    CAS  Article  Google Scholar 

  14. 14.

    Miró M, Hartwell SK, Jakmunee J, Grudpan K, Hansen EH (2008) Trac-Trends Anal Chem 27:749–761

    Article  Google Scholar 

  15. 15.

    Quintana JB, Miró M, Estela JM, Cerdà V (2006) Anal Chem 78:2832–2840

    CAS  Article  Google Scholar 

  16. 16.

    Quintana JB, Boonjob W, Miró M, Cerdà V (2009) Anal Chem 81:4822–4830

    CAS  Article  Google Scholar 

  17. 17.

    Sanchez BA, Capote FP, Jimenez JR, de Castro MDL (2008) J Chromatogr A 1207:46–54

    Article  Google Scholar 

  18. 18.

    Hu L, Yang X, Wang C, Yuan H, Xiao D (2007) J Chromatogr B 856:245–251

    CAS  Article  Google Scholar 

  19. 19.

    Kadara RO, Haggett BGD, Birch BJ (2006) J Agric Food Chem 54:4921–4924

    CAS  Article  Google Scholar 

  20. 20.

    Albalá-Hurtado S, Veciana-Nogués MT, Izquierdo-Pulido M, Mariné-Font A (1997) J Chromatogr A 778:247–253

    Article  Google Scholar 

  21. 21.

    Tang X, Cronin DA, Brunton NP (2006) J Food Compos Anal 19:831–837

    CAS  Article  Google Scholar 

  22. 22.

    Miró M, Jonczyk S, Wang JH, Hansen EH (2003) J Anal Atomic Spectrom 18:89–98

    Article  Google Scholar 

  23. 23.

    Segundo MA, Magalhães LM (2006) Anal Sci 22:3–8

    CAS  Article  Google Scholar 

  24. 24.

    Wang JH, Hansen EH, Miró M (2003) Anal Chim Acta 499:139–147

    CAS  Article  Google Scholar 

  25. 25.

    Song S, Peng C (2008) J Dispersion Sci Technol 29:1367–1372

    CAS  Article  Google Scholar 

  26. 26.

    Sellergren B, Manesiotis P, Hall AJ, Boerje S, Panagiotis M (2004) Patent number WO 2004/067578 A1, World Intellectual Property Organization

  27. 27.

    MIP Technologies AB/SUPELCO (2006) SupelMIP™ SPE—Riboflavin (Vitamin B2), http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Product_Information_Sheet/t706022.Par.0001.File.tmp/t706022.pdf, accessed on 2009/12/04

  28. 28.

    Manesiotis P, Borrelli C, Aureliano CSA, Svensson C, Sellergren B (2009) J Mater Chem 19:6185–6193

    CAS  Article  Google Scholar 

  29. 29.

    Kolev S, McKelvie I (Eds.) Advances in Flow Injection Analysis and Related Techniques, Elsevier, Amsterdam, 2008

  30. 30.

    Boqué R, Van der Heyden Y (2009) LC GC Eur 22:82–85

    Google Scholar 

  31. 31.

    Gao YL, Guo F, Gokavi S, Chow A, Sheng QH, Guo MR (2008) Food Chem 110:769–776

    CAS  Article  Google Scholar 

  32. 32.

    Zandomeneghi M, Carbonaro L, Zandomeneghi G (2007) J Agric Food Chem 55:5990–5994

    CAS  Article  Google Scholar 

  33. 33.

    Vinas P, Balsalobre N, Lopez-Erroz C, Hernandez-Cordoba M (2004) J Agric Food Chem 52:1789–1794

    CAS  Article  Google Scholar 

  34. 34.

    Zougagh M, Rios A (2008) Electrophoresis 29:3213–3219

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by FCT through project PTDC/AAC-AMB/104882/2008, by Spanish Ministry of Education and Science through project CTQ2007-64331, and by Integrated Action no E-48/09. Hugo M. Oliveira thanks Fundação para a Ciência e Tecnologia (FCT) and FSE (III Quadro Comunitário) for the PhD grant SFRH/BD/22494/2005. The authors thank Dr Ferran Hierro from the Microscopy Laboratory at the University of the Balearic Islands for providing the electron microscopy picture of the MIP material and Mr. Marcelo Vaz Osório for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcela A. Segundo.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM1

(PDF 483 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oliveira, H.M., Segundo, M.A., Lima, J.L.F.C. et al. Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: application to the determination of riboflavin in foodstuffs. Anal Bioanal Chem 397, 77–86 (2010). https://doi.org/10.1007/s00216-010-3522-1

Download citation

Keywords

  • Solid-phase extraction
  • Molecularly imprinted polymer
  • Flow analysis
  • Lab-on-valve
  • Riboflavin
  • Foodstuff