Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 233–241 | Cite as

Voltammetric detection of damage to DNA caused by nitro derivatives of fluorene using an electrochemical DNA biosensor

Original Paper

Abstract

An electrochemical DNA biosensor based on the screen printed carbon paste electrode (SPCPE) with an immobilized layer of calf thymus double-stranded DNA has been used for in vitro investigation of the interaction between genotoxic nitro derivatives of fluorene (namely 2-nitrofluorene and 2,7-dinitrofluorene) and DNA. Two types of DNA damage have been detected at the DNA/SPCPE biosensor: first, that caused by direct association of the nitrofluorenes, for which an intercalation association has been found using the known DNA intercalators [Cu(phen)2]2+ and [Co(phen)3]3+ as competing agents, and, second, that caused by short-lived radicals generated by electrochemical reduction of the nitro group (observable under specific conditions only).

Figure

Anodic DPV response of DNA bases at the DNA/SPCPE (after baseline correction) recorded in AcB -methanol (99:1) medium; Eamp 50 mV, pulse width 100 ms, scan rate 20 mV s−1, Estep 5 mV, 36°C. DP voltammograms recorded at the DNA/SPCPE before (green curve) and after successive CV cathodic/anodic cycling between 0 and −1000 mV (15 scans; scan rate 50 mV s−1) in solution of 2-NF (c=1×10−5 mol L−1) in AcB -methanol (99:1) (red curve). Two different DNA/SPCPEs were used to record green and red curve

Keywords

2-Nitrofluorene 2,7-Dinitrofluorene DNA biosensor Screen printed carbon paste electrode Electrochemical detection DNA damage 

Notes

Acknowledgments

This work was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic (projects LC 06035, MSM 0021620857, and RP 14/63) and by the European Union Lifelong Learning Programme (Erasmus). J. L. thanks to the Grant Agency VEGA (project 1/0852/08) of the Ministry of Education of the Slovak Republic and Slovak Academy of Sciences for financial support.

References

  1. 1.
    Jacob J, Karcher W, Belliardo JJ, Dumler R, Boenke A (1991) Fresenius J Anal Chem 340:755–767CrossRefGoogle Scholar
  2. 2.
    Moreira JC, Barek J (1995) Quim Nova 18:362–367Google Scholar
  3. 3.
    Moller L (1994) Environ Health Perspect 102:139–146CrossRefGoogle Scholar
  4. 4.
    Moller L, Rafter J, Gustafsson JA (1987) Carcinogenesis 8:637–645CrossRefGoogle Scholar
  5. 5.
    Edenharder R, Tang X (1997) Food Chem Toxicol 35:357–372CrossRefGoogle Scholar
  6. 6.
    Moller L, Cui XS, Torndal UB, Eriksson LC (1993) Carcinogenesis 14:2627–2632CrossRefGoogle Scholar
  7. 7.
    Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2007) Sci Total Environ 384:280–292CrossRefGoogle Scholar
  8. 8.
    Ueda O, Kitamura S, Kubo R, Yano Y, Kanzaki Y, Fujimoto T, Tatsumi K, Ohta S (2001) Xenobiotica 31:33–49CrossRefGoogle Scholar
  9. 9.
    Al-Kindy SM, Miller JN (2009) Biomed Chromatogr 23:166–169CrossRefGoogle Scholar
  10. 10.
    Toledo M, Lancas FM, Carrilho E (2007) J Braz Chem Soc 18:1004–1010CrossRefGoogle Scholar
  11. 11.
    Vyskocil V, Barek J, Jiranek I, Zima J (2008) In: Lefebvre MH, Roux MM (eds) Progress on Drinking Water Research. Nova Science Publishers, New YorkGoogle Scholar
  12. 12.
    Vyskocil V, Barek J (2009) Crit Rev Anal Chem 39:173–188CrossRefGoogle Scholar
  13. 13.
    Barek J, Peckova K, Vyskocil V (2008) Curr Anal Chem 4:242–249CrossRefGoogle Scholar
  14. 14.
    Brichac J, Zima J, Barek J (2004) Anal Lett 37:2379–2392CrossRefGoogle Scholar
  15. 15.
    Yosypchuk B, Barek J (2009) Crit Rev Anal Chem 39:189–203CrossRefGoogle Scholar
  16. 16.
    Barek J, Fischer J, Navratil T, Peckova K, Yosypchuk B, Zima J (2007) Electroanalysis 19:2003–2014CrossRefGoogle Scholar
  17. 17.
    Selesovska-Fadrna R, Fojta M, Navratil T, Chylkova J (2007) Anal Chim Acta 582:344–352CrossRefGoogle Scholar
  18. 18.
    Navratil T, Barek J (2009) Crit Rev Anal Chem 39:131–147CrossRefGoogle Scholar
  19. 19.
    Navratil T, Senholdova Z, Shanmugam K, Barek J (2006) Electroanalysis 18:201–206CrossRefGoogle Scholar
  20. 20.
    Sebkova S, Navratil T, Kopanica M (2004) Anal Lett 37:603–628CrossRefGoogle Scholar
  21. 21.
    Sebkova S, Navratil T, Kopanica M (2003) Anal Lett 36:2767–2782CrossRefGoogle Scholar
  22. 22.
    Yosypchuk B, Navratil T, Lukina AN, Peckova K, Barek J (2007) Chem Anal (Warsaw) 52:897–910Google Scholar
  23. 23.
    Peckova K, Musilova J, Barek J (2009) Crit Rev Anal Chem 39:148–172CrossRefGoogle Scholar
  24. 24.
    Peckova K, Barek J, Navratil T, Yosypchuk B, Zima J (2009) Anal Lett 42:2339–2363CrossRefGoogle Scholar
  25. 25.
    Danhel A, Peckova K, Cizek K, Barek J, Zima J, Yosypchuk B, Navratil T (2007) Chem Listy 101:144–149Google Scholar
  26. 26.
    Fischer J, Vanourkova L, Danhel A, Vyskocil V, Cizek K, Barek J, Peckova K, Yosypchuk B, Navrati T (2007) Int J Electrochem Sci 2:226–234Google Scholar
  27. 27.
    Fischer J, Barek J, Yosypchuk B, Navratil T (2006) Electroanalysis 18:127–130CrossRefGoogle Scholar
  28. 28.
    Labuda J, Fojta M, Jelen F, Palecek E (2006) In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of Sensors, vol 3. Stevenson Ranch, American Scientific PublishersGoogle Scholar
  29. 29.
    Palecek E, Scheller F, Wang J (2005) Electrochemistry of Nucleic Acids and Proteins, vol 1. Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Fojta M (2002) Electroanalysis 14:1449–1463CrossRefGoogle Scholar
  31. 31.
    Vacek J, Mozga T, Cahova K, Pivonkova H, Fojta M (2007) Electroanalysis 19:2093–2102CrossRefGoogle Scholar
  32. 32.
    Lucarelli F, Palchetti I, Marrazza G, Mascini M (2002) Talanta 56:949–957CrossRefGoogle Scholar
  33. 33.
    Havran L, Vacek J, Cahova K, Fojta M (2008) Anal Bioanal Chem 391:1751–1758CrossRefGoogle Scholar
  34. 34.
    Labuda J, Buckova M, Heilerova L, Silhar S, Stepanek I (2003) Anal Bioanal Chem 376:168–173CrossRefGoogle Scholar
  35. 35.
    Fojta M, Jelen F, Havran L, Palecek E (2008) Curr Anal Chem 4:250–262CrossRefGoogle Scholar
  36. 36.
    Bagni G, Hernandez S, Mascini M, Sturchio E, Boccia P, Marconi S (2005) Sensors 5:394–410CrossRefGoogle Scholar
  37. 37.
    Szpakowska I, Krassowska-Swiebocka B, Maciejewska D, Kazmierczak P, Jemielita W, Konrad M, Trykowska J, Maj-Zurawska M (2005) Electroanalysis 18:1422–1430CrossRefGoogle Scholar
  38. 38.
    Palanti S, Marrazza G, Mascini M (1996) Anal Lett 29:2309–2331CrossRefGoogle Scholar
  39. 39.
    Rodriguez M, Bard AJ (1990) Anal Chem 62:2658–2662CrossRefGoogle Scholar
  40. 40.
    Marrazza G, Chianella I, Mascini M (1999) Anal Chim Acta 387:297–307CrossRefGoogle Scholar
  41. 41.
    Mahadevan S, Palaniandavar M (1998) Inorg Chem 37:693–700CrossRefGoogle Scholar
  42. 42.
    Pang DW, Abruna HD (1998) Anal Chem 70:3162–3169CrossRefGoogle Scholar
  43. 43.
    Carter MT, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901–8911CrossRefGoogle Scholar
  44. 44.
    Sigman DS (1986) Acc Chem Res 19:180–186CrossRefGoogle Scholar
  45. 45.
    Labuda J, Buckova M, Vanickova M, Mattusch J, Wennrich R (1999) Electroanalysis 11:101–107CrossRefGoogle Scholar
  46. 46.
    Ovadekova R, Jantova S, Letasiova S, Stepanek I, Labuda J (2006) Anal Bioanal Chem 386:2055–2062CrossRefGoogle Scholar
  47. 47.
    Labuda J, Ovadekova R, Galandova J (2009) Microchim Acta 164:371–377CrossRefGoogle Scholar
  48. 48.
    Gary JT, Day RA (1960) J Electrochem Soc 107:616–618CrossRefGoogle Scholar
  49. 49.
    Vyskocil V, Barek J (2009) Collect Czech Chem Commun 74:1675–1696CrossRefGoogle Scholar
  50. 50.
    Abreu FC, Goulart MOF, Brett AMO (2002) Biosens Bioelectron 17:913–919CrossRefGoogle Scholar
  51. 51.
    Brett AMO, Dicolescu VC, Chiorcea-Paquim AM, Serrano SHP (2007) In: Alegret S, Merkoci A (eds) Electrochemical Sensor Analysis. Elsevier, AmsterdamGoogle Scholar
  52. 52.
    Bowater RP, Davies RJH, Palecek E, Fojta M (2009) Chim Oggi-Chem Today 27:50–54Google Scholar
  53. 53.
    Galandova J, Ovadekova R, Ferancova A, Labuda J (2009) Anal Bioanal Chem 394:855–861CrossRefGoogle Scholar
  54. 54.
    Dollimore LS, Gillard RD (1973) J Chem Soc-Dalton Trans 933–940Google Scholar
  55. 55.
    Rice ME, Galus Z, Adams RN (1983) J Electroanal Chem 143:89–102CrossRefGoogle Scholar
  56. 56.
    Pang DW, Zhang M, Wang ZL, Qi YP, Cheng JK, Liu ZY (1996) J Electroanal Chem 403:183–188CrossRefGoogle Scholar
  57. 57.
    Lund H (2001) In: Lund H, Hammerich O (eds) Organic Electrochemistry, 4th edn. Marcel Dekker, New YorkGoogle Scholar
  58. 58.
    Zuman P (1993) Collect Czech Chem Commun 58:41–46CrossRefGoogle Scholar
  59. 59.
    Ungureanu EM, Razus AC, Birzan L, Cretu MS, Buica GO (2008) Electrochim Acta 53:7089–7099CrossRefGoogle Scholar
  60. 60.
    Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, Anwar MA, Khalid AM (2005) J Pharm Biomed Anal 37:205–217CrossRefGoogle Scholar
  61. 61.
    Tocher JH (1997) Gen Pharmacol 28:485–487CrossRefGoogle Scholar
  62. 62.
    Fojta M (2005) In: Palecek E, Scheller F, Wang J (eds) Electrochemistry of Nucleic Acids and Proteins, vol 1. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Vlastimil Vyskočil
    • 1
  • Ján Labuda
    • 2
  • Jiří Barek
    • 1
  1. 1.Charles University in Prague, Faculty of Science, Department of Analytical ChemistryUNESCO Laboratory of Environmental ElectrochemistryPrague 2Czech Republic
  2. 2.Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical ChemistryBratislavaSlovakia

Personalised recommendations