Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 127–135 | Cite as

Validated HPAEC-PAD method for prebiotics determination in synbiotic fermented milks during shelf life

  • Chiara Borromei
  • Antonella Cavazza
  • Claudio Corradini
  • Claudia Vatteroni
  • Adelina Bazzini
  • Raffaella Ferrari
  • Paolo Merusi
Original Paper


Interest concerning functional food has been growing in recent years, and much attention has been focused on the choice of prebiotic fibers and probiotic microorganisms added to food products with the aim of improving health, producing synbiotic products. In the work reported here, an innovative analytical method performed by high-performance anion-exchange chromatography (HPAEC) with pulsed electrochemical detection has been optimized and validated for application to the study of prebiotic effects in synbiotic fermented milk prepared by addition of probiotics. The proposed method permits the evaluation of fructooligosaccharides and inulooligosaccharides with degrees of polymerization of 6–7 and 4–7, respectively. Quantitative determination was performed on oligosaccharides, whose standards are not commercially available, by employing calibration curves built by adding a known amount of the fiber used as an ingredient to the matrix. The work provides results from a parallel study on simultaneous variations of prebiotics and probiotics during the shelf life of fermented milk samples. The main advantage over time-consuming, classic enzymatic methods, whose results are limited only to average fiber content, is the possibility of dosing each carbohydrate by performing a single HPAEC run. Validation in terms of detection and quantitation limits, linearity, precision, and recovery was carried out.


High-performance anion-exchange chromatography with pulsed electrochemical detection Fructooligosaccharides Inulooligosaccharides Probiotics Synbiotics Fermented milks Validation 



The project was funded by the Italian Ministry for the University and Research (MIUR) with PNR project no. RBIP06SXMR “Sviluppo di metodologie innovative per l”analisi di prodotti agroalimentari”.


  1. 1.
    Gibson GR, Roberfroid MB (1995) J Nutr 25:1401–1412Google Scholar
  2. 2.
    Casale L, Alegro A, Alegro JHA, Cardarelli HR, Chiu MC, Saad S (2007) Potentially probiotic and synbiotic chocolate mousse. Lebensm Wiss Technol 40:669–675CrossRefGoogle Scholar
  3. 3.
    Buriti FCA, Cardarelli HR, Filisetti TMCC, Saad SMI (2007) Food Chem 104:1605–1610CrossRefGoogle Scholar
  4. 4.
    Gomes A, Rodrigues D, Freitas AC, Santos TR, Goodfellow B (2009) New Biotechnol 25(1):S94CrossRefGoogle Scholar
  5. 5.
    Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB (2004) Nutr Res Rev 17:259–275CrossRefGoogle Scholar
  6. 6.
    Roberfroid MB, Delzenne NM (1998) Annu Rev Nut 18:117–143CrossRefGoogle Scholar
  7. 7.
    Manzi P, Marconi S, Pizzoferrato L (2007) Food Chem 104:808–813CrossRefGoogle Scholar
  8. 8.
    Teitelbaum JE, Walker WA (2002) Annu Rev Nutr 22:107–138CrossRefGoogle Scholar
  9. 9.
    Fooks LJ, Fuller R, Gibson GR (1999) Int Dairy J 9:53–61CrossRefGoogle Scholar
  10. 10.
    Farnworth ER (2001) In: Wildman REC (ed) Handbook of nutraceuticals and functional food. Boca Raton, CRCGoogle Scholar
  11. 11.
    Shin HS, Lee JH, Pestka JJ, Ustunol Z (2000) J Food Sci 65(5):884–887CrossRefGoogle Scholar
  12. 12.
    Alkalin AS, Fenderya S, Akbulut N (2004) Int J Food Sci Technol 39:613–621CrossRefGoogle Scholar
  13. 13.
    Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Appl Environ Microb 71:6150–6158CrossRefGoogle Scholar
  14. 14.
    Makras L, Acker GV, Vuyst LD (2005) Appl Environ Microb 71:6531–6537CrossRefGoogle Scholar
  15. 15.
    Lopez-Molina D, Navarro-Martinez MD, Rojas-Melgarejo F, Hiner AN, Chazarra S, Rodriguez-Lopez JN (2005) Phytochemistry 66(12):1476–1484CrossRefGoogle Scholar
  16. 16.
    McCleary BV, Murphy A, Mugford DC (1997) J AOAC Int 83:356–364Google Scholar
  17. 17.
    Andersen R, Sorensen A (2000) Eur Food Res Technol 210:148–152CrossRefGoogle Scholar
  18. 18.
    Steegmans M, Iliaens S, Hoebregs H (2004) J AOAC Int 87:1200–1207Google Scholar
  19. 19.
    Quemener B, Thibault JF, Coussment P (1994) Lebansm Wiss Technol 27:125–132CrossRefGoogle Scholar
  20. 20.
    Corradini C, Bianchi F, Matteuzzi D, Amoretti A, Rossi M, Zanoni S (2004) J Chromatogr A 1054:165–173CrossRefGoogle Scholar
  21. 21.
    Chiavaro E, Vittadini E, Corradini C (2007) Eur Food Res Technol 225:85–94CrossRefGoogle Scholar
  22. 22.
    Borromei C, Careri M, Cavazza A, Corradini C, Elviri L, Mangia A, Merusi C (2009) Int J Anal Chem. doi: 10.1155/2009/530639
  23. 23.
    Feinberg M, San-Redon J, Assié A (2009) J Chromatogr B 877(23):2388–2395CrossRefGoogle Scholar
  24. 24.
    Heinze B, Praznik W (1991) J Polym Sci 48:207–225Google Scholar
  25. 25.
    Borromei C, Cavazza A, Merusi C, Corradini C (2009) J Sep Sci 32:1–8CrossRefGoogle Scholar
  26. 26.
    LGC (1998) The fitness for purpose of analytical methods: a laboratory guide to method validation and related topics. EURACHEM guide. LGC, Teddington. Available via
  27. 27.
    Vinderola CG, Reinhemer JA (2000) Int Dairy J 10:271–275CrossRefGoogle Scholar
  28. 28.
    Shah NP (1997) Milchwissenschaft 52(2):72–76Google Scholar
  29. 29.
    Corradini C, Galanti R, Nicoletti I, Restani P, Beretta B, Gaiaschi A (2000) In: Proceedings of IV Italian national congress of food chemistryGoogle Scholar
  30. 30.
    Kaplan H, Hutkins RW (2000) Appl Environ Microb 66(6):2682–2684CrossRefGoogle Scholar
  31. 31.
    Zhu J (2004) Shipin Gongye Keji 25(2):70–71Google Scholar
  32. 32.
    Dello Staffolo M, Bertola N, Martino M, Bevilacqua A (2004) Int Dairy J 14(3):263–268CrossRefGoogle Scholar
  33. 33.
    Akalin AS, Gönç S, Ünal G, Fenderya S (2007) J Food Sci 72(7):M222–M227CrossRefGoogle Scholar
  34. 34.
    Kurmann JA, Rasic JL (1991) In: Robinson RK (ed) Therapeutic properties of fermented milks. Applied Science, LondonGoogle Scholar
  35. 35.
    Dave RI, Shah NP (1997) Int Dairy J 7:31–41CrossRefGoogle Scholar
  36. 36.
    De Souza Oliveira RP, Florence ACR, Silva RC, Perego P, Converti A, Gioielli LA, De Oliveira MN (2008) Int J Food Microbiol 128(3):467–472CrossRefGoogle Scholar
  37. 37.
    Vinderola G, Mocchiutti P, Reinheimer JA (2002) J Dairy Sci 85:721–729CrossRefGoogle Scholar
  38. 38.
    Rybka S (1994) The enumeration of Lactobacillus, Streptoccocus and Bifidobacterium spp. in yogurt starters. BSc dissertation, University of New South WalesGoogle Scholar
  39. 39.
    Kailasapathy K, Chin J (2000) Immunol Cell Biol 78:80–88CrossRefGoogle Scholar
  40. 40.
    Donkor ON, Nilmini SLI, Stolic P, Vasiljevic T, Shah NP (2007) Int Dairy J 17:657–665CrossRefGoogle Scholar
  41. 41.
    De Souza Oliveira RP, Perego P, Converti A, De Oliveira MN (2009) Lebensm Wiss Technol 42(5):1015–1021CrossRefGoogle Scholar
  42. 42.
    Sangeetha P, Ramesh MN, Prapulla SG (2005) Process Biochem 40:1085–1088CrossRefGoogle Scholar
  43. 43.
    Muramatsu K, Onodera S, Kikuchi M, Shiomi N (1992) Biosci Biotechnol Biochem 56:1451–1454CrossRefGoogle Scholar
  44. 44.
    Sodini L, Lucas A, Oliveira MN, Remeuf F, Corrieu G (2002) J Dairy Sci 85(10):2479–2488CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Chiara Borromei
    • 1
  • Antonella Cavazza
    • 1
  • Claudio Corradini
    • 1
  • Claudia Vatteroni
    • 2
  • Adelina Bazzini
    • 2
  • Raffaella Ferrari
    • 2
  • Paolo Merusi
    • 2
  1. 1.Dipartimento di Chimica Generale e Inorganica, Chimica Analitica, Chimica FisicaUniversità di ParmaParmaItaly
  2. 2.Ricerca e Sviluppo, ParmalatCastellaro (Parma)Italy

Personalised recommendations