Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 401–406 | Cite as

Ultra-fast HPLC-ICP-MS analysis of oxaliplatin in patient urine

  • Gunda Koellensperger
  • Stephan Hann
Technical Note


A novel method for rapid HPLC-ICP-MS analysis of oxaliplatin in human urine was developed implementing a stationary HPLC phase with a particle size of 1.8 µm. The method allowed a cycle time of <1 min at a HPLC flow rate of 0.9 mL min−1. Procedural limits of detection of 0.05 µg L−1 oxaliplatin (150 fg on column) were obtained. Analysis of oxaliplatin in patient urine showed that accurate quantification of the intact drug demanded for storage at −80 °C and rapid measurement after thawing.


Oxaliplatin HPLC ICP-MS 



Financial support was granted through the Austrian Science Fund (FWF-Project P16089-N03: “Speciation of cancerostatic Pt compounds in the environment”). Prof. Mader (Vienna University Hospital) is gratefully acknowledged for sampling of patient urine. Thomas Falta is acknowledged for performing the HILIC-ICP-MS measurements.


  1. 1.
    Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E (2000) Clin Cancer Res 6:1205–1218Google Scholar
  2. 2.
    Jerremalm E, Wallin I, Ehrsson H (2009) J Pharm Sci 98:3879–3885CrossRefGoogle Scholar
  3. 3.
    Gammelgaard B, Packert Jensen B (2007) J Anal Atom Spectrom 22:235–249CrossRefGoogle Scholar
  4. 4.
    van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1956) Chem Eng Sci 5:271–289CrossRefGoogle Scholar
  5. 5.
    Majors RE (2006) LC-GC Europe 19:352–362Google Scholar
  6. 6.
    Luo FR, Yen T-Y, Wyrick SD, Chaney SG (1999) J Chromatogr B 724:345–356CrossRefGoogle Scholar
  7. 7.
    Analytical Methods Technical Committee of the Chemistry Manufacturing Controls Coordinating Committee (CMC CC) of the Center for Drug Evaluation and Research at the Food and Drug Administration, Reviewer Guidance “Validation of Chromatographic Methods”, 1994, page 22.Google Scholar
  8. 8.
    Zhang W, Seymour L, Chen EX (2008) J Chrom B 876:277–282CrossRefGoogle Scholar
  9. 9.
    Ehrsson H, Wallin I (2003) J Chrom B 795:291–294CrossRefGoogle Scholar
  10. 10.
    Eiden C, Philibert L, Bekhtari K, Poujol S, Malosse F, Pinguet F (2009) Am J Health Syst Pharm 66:1929–1933CrossRefGoogle Scholar
  11. 11.
    Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E (2000) Clin Cancer Res 2000:1205–1218Google Scholar
  12. 12.
    Allain P, Heudi O, Cailleux A, Le Bouil A, Larra F, Boisdron-Celle M, Gamelin E (2000) Drug Metab Dispos 28:1379–1384Google Scholar
  13. 13.
    Jerremalm E, Hedeland M, Wallin I, Bondesson U, Ehrsson H (2004) Pharm Res 21:891–894CrossRefGoogle Scholar
  14. 14.
    Kragten J (1994) Analyst 119:2161–2166CrossRefGoogle Scholar
  15. 15.
    EURACHEM (2000) Quantifying uncertainty in analytical measurement, 2nd edn. UK, LondonGoogle Scholar
  16. 16.
    Falta T, Koellensperger G, Standler A, Buchberger W, Mader RM, Hann S (2009) J Anal At Spectrom 24:1336–1342CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Division of Analytical ChemistryUniversity of Natural Resources and Applied Life Sciences, BOKU, ViennaViennaAustria

Personalised recommendations