Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 181–188 | Cite as

Quantification of chlorpheniramine maleate enantiomers by ultraviolet spectroscopy and chemometric methods

  • P. Valderrama
  • A. L. Romero
  • P. M. Imamura
  • I. R. S. Magalhães
  • P. S. Bonato
  • R. J. Poppi
Original Paper


Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with β-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.


Chlorpheniramine maleate Enantiomers Ultraviolet spectroscopy Multivariate calibration Validation 



The authors thank FAPESP (process 05/56188-1) and CNPq for fellowships.


  1. 1.
    Wermuth CG, Stahl PH (2002) In: Stahl PH, Wermuth CG (eds) Handbook of pharmaceutical salts: properties, selection, and use. Weinheim, Wiley-VCHGoogle Scholar
  2. 2.
    Najjar TA, Al-Dhawailie Al-Alsheikh OA, AA SA (1995) Int J Clin Pharmacol Ther 33:619–621Google Scholar
  3. 3.
    Hiep BT, Fernandez C, Tod M, Banide H, Thuillier A, Lacour B, Farinotti R, Gimenez F (2001) Chirality 13:207–213CrossRefGoogle Scholar
  4. 4.
    Miyazaki H, Abuki H (1976) Chem Pharm Bull 24:2572–2574CrossRefGoogle Scholar
  5. 5.
    Koch KM, O’Connor-Semmes L, Davis IM, Yin Yin (1998) J Pharm Sci 87:1097–1100CrossRefGoogle Scholar
  6. 6.
    Hiep BT, Fernandez C, Khanh V, Hung NK, Thuillier A, Farinotti R, Arnaud P, Gimenez F (2000) Chirality 12:599–605CrossRefGoogle Scholar
  7. 7.
    Fujiwara K, Iwamoto K, Kawai S, Sakamoto T (1989) J Pharm Soc 109:59–64CrossRefGoogle Scholar
  8. 8.
    Sakurai E, Yamasaki S, Iisuka Y, Hikichi N, Niwa H (1992) J Pharm Pharmacol 44:44–47CrossRefGoogle Scholar
  9. 9.
    Council of Europe (2002) The European pharmacopoeia III, supplement no 1196. Council of Europe, StrasbourgGoogle Scholar
  10. 10.
    Hiep BT, Khanh V, Hung NK, Thuillier A, Gimenez F (1994) J Chromatogr B 707:235–240CrossRefGoogle Scholar
  11. 11.
    Schuster A, Bernhardt G, Eibler E, Buschauer A, Hesselink W (1998) J Chromatogr A 793:77–90CrossRefGoogle Scholar
  12. 12.
    Koppenhoefer B, Epperlein U, Christian B, Lin B, Ji Y, Chen Y (1996) J Chromatogr A 735:333–343CrossRefGoogle Scholar
  13. 13.
    Wei Y, Li J, Zhu C, Hao A, Zhao M (2005) Anal Sci 21:959–962CrossRefGoogle Scholar
  14. 14.
    Van Eeckhaut AV, Detaevernier MR, Michotte Y (2002) J Chromatogr A 958:291–297CrossRefGoogle Scholar
  15. 15.
    Casy AF, Drake AF, Ganellin CR, Mercer AD, Upton C (1992) Chirality 4:356–366CrossRefGoogle Scholar
  16. 16.
    Dignam CF, Randall LA, Blacken RD, Cunnungham PR, Lester SG, Brown MJ, French SC, Aniagyei SE, Wenzel TJ (2006) Tetrahedron Asymmetr 17:1199–1208CrossRefGoogle Scholar
  17. 17.
    Council of Europe (2008) The European pharmacopoeia 6.0, no 20241. Council of Europe, StrasbourgGoogle Scholar
  18. 18.
    Bossu E, Cotichini V, Gostoli G, Farina A (2001) J Pharm Biomed Anal 26:837–848CrossRefGoogle Scholar
  19. 19.
    El-Gindy A, Emara S, Mesbahm MK, Hadad GM (2005) J AOAC Int 88:1069–1080Google Scholar
  20. 20.
    Hadad GM, El-Gindy A, Mahmoud MM (2007) J AOAC Int 90:957–970Google Scholar
  21. 21.
    El-Gindy A, Emara S, Mesbah MK, Hadad GM (2006) Anal Lett 39:2699–2723CrossRefGoogle Scholar
  22. 22.
    Fakayode SO, Busch MA, Busch KW (2006) Talanta 68:1574–1583CrossRefGoogle Scholar
  23. 23.
    Szejtli J (1988) Cyclodextrin technology. Kluwer, DordrechtCrossRefGoogle Scholar
  24. 24.
    Busch KW, Swamidoss IM, Fakayode SO, Busch M (2003) J Am Chem Soc 125:1690–1691CrossRefGoogle Scholar
  25. 25.
    Busch KW, Swamidoss IM, Fakayode SO, Busch MA (2004) Anal Chim Acta 525:53–62CrossRefGoogle Scholar
  26. 26.
    Fakayode SO, Swamidoss IM, Busch MA, Busch KW (2005) Talanta 65:838–845CrossRefGoogle Scholar
  27. 27.
    Fakayode SO, Busch MA, Bellert DJ, Busch KW (2005) Analyst 130:233–241CrossRefGoogle Scholar
  28. 28.
    Valderrama P, Poppi RJ (2008) Anal Chim Acta 623:38–45CrossRefGoogle Scholar
  29. 29.
    Glenn AY, Fortier CA, Jack FI, Zhu X, Warner IM (2005) J Inclusion Phenom Macrocyclic Chem 51:87–91CrossRefGoogle Scholar
  30. 30.
    Evans CH, Partyka M, Stam JV (2000) J Incl Phenom Macrocycl Chem 38:381–396CrossRefGoogle Scholar
  31. 31.
    Zhang HR, Guo SY, Li L, Cai MY (2002) Anal Chim Acta 463:135–142CrossRefGoogle Scholar
  32. 32.
    Martens H, Naes T (1996) Multivariate calibration. Wiley, New YorkGoogle Scholar
  33. 33.
    Otto M (1999) Chemometrics. Wiley, WeinheimGoogle Scholar
  34. 34.
    Valderrama P, Braga JWB, Poppi RJ (2007) J Agric Food Chem 55:8331–8338CrossRefGoogle Scholar
  35. 35.
    Norgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB (2000) Appl Spectrosc 54:413–419CrossRefGoogle Scholar
  36. 36.
    Holland JH (1992) Sci Am 267:66–72CrossRefGoogle Scholar
  37. 37.
    Kennard RW, Stone LA (1969) Technometrics 11:137–148CrossRefGoogle Scholar
  38. 38.
    ASTM International (2005) Annual book of ASTM standards. Standards practices for infrared, multivariate, quantitative analysis, E1655 ASTM International, West ConshohockenGoogle Scholar
  39. 39.
    Valderrama P, Braga JWB, Poppi RJ (2007) J Braz Chem Soc 18:259–266CrossRefGoogle Scholar
  40. 40.
    Olivieri AC, Faber NKM, Ferré J, Boqué R, Kalivas JH, Mark H (2006) Pure Appl Chem 78:633–661CrossRefGoogle Scholar
  41. 41.
    Valderrama P, Braga JWB, Poppi RJ (2009) Quim Nova 32:1278–1287CrossRefGoogle Scholar
  42. 42.
    Riu J, Rius FX (1996) Anal Chem 68:1851–1857CrossRefGoogle Scholar
  43. 43.
    International Conference on Harmonisation (1997) Validation of analytical procedures: methodology Q2BGoogle Scholar
  44. 44.
    Vessman J, Stefan RI, Staden JFV, Danzer K, Lindner W, Burns DT, Fajgelj A, Miller H (2001) Pure Appl Chem 73:1381–1386CrossRefGoogle Scholar
  45. 45.
    Boqué R, Rius FX (1996) Chemom Intell Lab Syst 32:11–23CrossRefGoogle Scholar
  46. 46.
    Miller JC, Miller JN (1993) Statistics for analytical chemistry. Harwood, ChichesterGoogle Scholar
  47. 47.
    Swartz ME, Krull IS (1997) Analytical method development and validation. Dekker, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • P. Valderrama
    • 1
  • A. L. Romero
    • 1
  • P. M. Imamura
    • 1
  • I. R. S. Magalhães
    • 2
  • P. S. Bonato
    • 2
  • R. J. Poppi
    • 1
  1. 1.Institute of Chemistry, University of Campinas – UNICAMPCampinasBrazil
  2. 2.Pharmaceutical Science FacultyUniversity of São Paulo – USPRibeirão PretoBrazil

Personalised recommendations