Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 115–125 | Cite as

Comparison of two derivatization-based methods for solid-phase microextraction–gas chromatography–mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans

  • P. Viñas
  • N. Campillo
  • N. Martínez-Castillo
  • M. Hernández-Córdoba
Original Paper


An environmentally friendly sample pretreatment system based on solid-phase microextraction (SPME) for the sensitive determination of bisphenol A (BPA), bisphenol S (BPS) and biphenol (BP) is described. Two derivatisation reactions to obtain volatile derivatives are compared. Derivatisation with acetic anhydride (AA) was performed in situ in a 5-mM Na2CO3/NaHCO3 buffer solution and analytes were extracted by direct immersion (DI) using a PA fibre (85 µm) at 90°C for 40 min with stirring at 1,500 rpm. For derivatisation with bis-(trimethylsilyl)trifluoroacetamide (BSTFA), the analytes were first extracted by DI using the PA fibre at 70°C for 40 min with stirring at 500 rpm. The fibre was then removed, dried in a nitrogen stream for 2 min and introduced into the headspace of BSTFA at 50°C for 30 s. After derivatisation, the analytes were desorbed in the injection port of the GC in the splitless mode at 280°C for 4 min. The separation was carried out by coupling gas chromatography with mass spectrometry in the selected ion monitoring mode, GC-MS(SIM). The method allowed the determination of the migrating levels of bisphenols found in food cans, and it was validated for linearity, detection and quantitation limits, selectivity, accuracy and precision. Detection limits ranged from 3 to 16 pg mL−1, depending on the compound, at a signal-to-noise ratio of 3. Recoveries obtained for spiked samples were satisfactory for all compounds. Levels of BPA were higher than those of BPS and the lowest contents were found for BP.


The amounts of bisphenols migrated from food cans are very low


Gas chromatography–mass spectrometry Solid-phase microextraction On-fibre derivatisation Bisphenols Food cans 



The authors are grateful to the Spanish MEC (Project CTQ2009-08267/BQU) for financial support. N. Martínez-Castillo acknowledges a fellowship from Departamento de Formación del Personal Académico de la Universidad Centroccidental Lisandro Alvarado (Venezuela).


  1. 1.
    Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) J Chromatogr A 1216:449–469CrossRefGoogle Scholar
  2. 2.
    Staples CA, Dom PB, Klecka GM, O’Blook ST, Harris LR (1998) Chemosphere 36:2149–2173CrossRefGoogle Scholar
  3. 3.
    Jeong-Hun K, Fusao K, Yoshiki K (2006) Toxicology 226:79–89CrossRefGoogle Scholar
  4. 4.
    Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Endocrinology 132:2279–2286CrossRefGoogle Scholar
  5. 5.
    Commision Directive 2004/19/EC, Off J Eur Commun L71 8Google Scholar
  6. 6.
  7. 7.
    Lambert C, Larroque M (1997) J Chromatogr Sci 35:57–62CrossRefGoogle Scholar
  8. 8.
    Yoshida T, Horie M, Hoshino Y, Nakazawa H (2001) Food Addit Contam 18:69–75CrossRefGoogle Scholar
  9. 9.
    Kang JH, Kondo F (2002) Food Addit Contam 19:886–890CrossRefGoogle Scholar
  10. 10.
    Kang JH, Kondo F (2002) Res Vet Sci 73:177–182CrossRefGoogle Scholar
  11. 11.
    Inoue K, Murayama S, Takeba K, Yoshimura Y, Nakazawa H (2003) J Food Compos Anal 16:497–506CrossRefGoogle Scholar
  12. 12.
    Shao B, Han H, Hu J, Zhao J, Wu G, Xue Y, Ma Y, Zhang S (2005) Anal Chim Acta 530:245–252CrossRefGoogle Scholar
  13. 13.
    Covaci A, Voorspoels S (2005) J Chromatogr B 827:216–223CrossRefGoogle Scholar
  14. 14.
    Kang JH, Kondo F, Katayama Y (2006) Anal Chim Acta 555:114–117CrossRefGoogle Scholar
  15. 15.
    Sun C, Leong LP, Barlow PJ, Chan SH, Bloodworth BC (2006) J Chromatogr A 1129:145–148CrossRefGoogle Scholar
  16. 16.
    Maragou NC, Lampi EN, Thomaidis NS, Koupparis MA (2006) J Chromatogr A 1129:165–173CrossRefGoogle Scholar
  17. 17.
    Kuruto-Niwa R, Tateota Y, Usuki Y, Nozawa R (2007) Chemosphere 66:1160–1164CrossRefGoogle Scholar
  18. 18.
    Gyong Y, Shin JH, Kim HY, Khim J, Lee MK, Hong J (2007) Anal Chim Acta 603:67–75CrossRefGoogle Scholar
  19. 19.
    Toyo’oka T, Oshige Y (2000) Anal Sci 16:1071–1076CrossRefGoogle Scholar
  20. 20.
    Nerín C, Salafranca J, Aznar M, Batlle R (2009) Anal Bioanal Chem 393:809–833CrossRefGoogle Scholar
  21. 21.
    Luque de Castro MD, Luque García JL (2002) Acceleration and automation of solid sample treatment. Elsevier, The NetherlandsGoogle Scholar
  22. 22.
    Pawliszyn J (1997) Solid phase microextraction. Theory and practice. Wiley-VCH, New YorkGoogle Scholar
  23. 23.
    Pawliszyn J (ed) (1999) Applications of Solid Phase Microextraction. Royal Institute of ChemistryGoogle Scholar
  24. 24.
    Salafranca J, Battle R, Nerín C (1999) J Chromatogr A 864:137–144CrossRefGoogle Scholar
  25. 25.
    Chang CM, Chou CC, Lee MR (2005) Anal Chim Acta 539:41–47CrossRefGoogle Scholar
  26. 26.
    Helaleh MIH, Fujii S, Korenaga T (2001) Talanta 54:1039–1047CrossRefGoogle Scholar
  27. 27.
    Braun P, Moeder M, Schhrader S, Popp P, Kuschk P, Engewald W (2003) J Chromatogr A 988:41–51CrossRefGoogle Scholar
  28. 28.
    Basheer C, Parthiban A, Jayaraman A, Kee-Lee H, Valiyaveettil S (2005) J Chromatogr A 1087:274–282CrossRefGoogle Scholar
  29. 29.
    Xiangli L, Li L, Shichun Z, Chongyu L, Tiangang L (2006) Chin J Anal Chem 34:325–328CrossRefGoogle Scholar
  30. 30.
    Nerín C, Philo MR, Salafranca J, Castle L (2002) J Chromatogr A 963:375–380CrossRefGoogle Scholar
  31. 31.
    del Olmo M, Zafra A, Suárez B, Gónzalez-Casado A, Taoufiki J, Vílchez JL (2005) J Chromatogr B 817:167–172CrossRefGoogle Scholar
  32. 32.
    Munguía-López EM, Gerardo-Lugo S, Peralta E, Bolumen S, Soto-Valdez H (2005) Food Addit Contam 22:892–898CrossRefGoogle Scholar
  33. 33.
    Biles JE, McNeal TP, Begley TH, Hollifield HC (1997) J Agric Food Chem 45:3541–3544CrossRefGoogle Scholar
  34. 34.
    Biles JE, McNeal TP, Begley TH (1997) J Agric Food Chem 45:4697–4700CrossRefGoogle Scholar
  35. 35.
    McNeal TP, Biles JE, Begley TH, Craun JC, Hopper ML, Sack CA (2000) ACS Symp Ser 747:33–34CrossRefGoogle Scholar
  36. 36.
    D'Antuono A (2001) Campo Dall‘Orto V, Lo Balbo A, Sobral S, Rezzano I. J Agric Food Chem 49:1098–1101CrossRefGoogle Scholar
  37. 37.
    Dietz C, Sanz J, Cámara C (2006) J Chromatogr A 1103:183–192CrossRefGoogle Scholar
  38. 38.
    Kuo HW, Ding WH (2004) J Chromatogr A 1027:67–74CrossRefGoogle Scholar
  39. 39.
    Wingender RJ, Niketas P, Switala CK (1998) J Coat Technol 70:75–82CrossRefGoogle Scholar
  40. 40.
    Basheer C, Lee HK, Tan KS (2004) Mar Pollut Bull 48:1145–1167CrossRefGoogle Scholar
  41. 41.
    Goodson A, Summerfield W, Cooper I (2002) Food Addit Contam 19:796–802CrossRefGoogle Scholar
  42. 42.
    Thomson BM, Grounds PR (2005) Food Addit Contam 22:65–72CrossRefGoogle Scholar
  43. 43.
    Jin X, Jiang G, Huang G, Liu J, Zhou Q (2004) Chemosphere 56:1113–1119CrossRefGoogle Scholar
  44. 44.
    Stuart JD, Capulong CP, Launer KD, Pan X (2005) J Chromatogr A 1079:136–145CrossRefGoogle Scholar
  45. 45.
    del Olmo M, Gónzalez-Casado A, Navas NA, Vílchez JL (1997) Anal Chim Acta 346:87–92CrossRefGoogle Scholar
  46. 46.
    Vílchez JL, Zafra A, Gónzalez-Casado A, Hontoria E, del Olmo M (2001) Anal Chim Acta 431:31–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • P. Viñas
    • 1
  • N. Campillo
    • 1
  • N. Martínez-Castillo
    • 1
  • M. Hernández-Córdoba
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryUniversity of MurciaMurciaSpain

Personalised recommendations