Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 389–394 | Cite as

Application of the new electroanalytical technique AGNES for the determination of free Zn concentration in river water

  • Francesca Zavarise
  • Encarnació Companys
  • Josep Galceran
  • Giancarla Alberti
  • Antonella Profumo
Technical Note


Absence of gradients and Nernstian equilibrium stripping (AGNES) is a recently developed electroanalytical technique specifically designed for the direct determination of free concentrations of metal ions. AGNES is applied here to the determination of free Zn concentration in a river water sample. The method has been validated with synthetic solutions of low ionic strengths containing Zn and 2,6-pyridinedicarboxylic acid and then applied to synthetic river waters and to a natural sample collected from Besòs River in Montcada i Reixac (Catalonia, North-Eastern Spain). In the river sample, an average free Zn concentration of 12.8(4) nM was obtained, while the total dissolved Zn concentration was 0.51(8) μM. To control and maintain pH and pCO2 constant during AGNES measurements, a novel device for N2/CO2 mixed purging has been developed.


Speciation AGNES River water Synthetic water Zn Purging system 



We thank M.L. Tercier-Waeber and J. Buffle for detailed information on their N2/CO2 purging device. We acknowledge support of this research from the Spanish Ministry of Education and Science (Project CTQ2006-14385) and from the “Comissionat d’Universitats i Recerca de la Generalitat de Catalunya”. The authors greatly appreciate the financial support of FAR, Fondo Ateneo per la Ricerca, Università di Pavia, Italy.


  1. 1.
    Buffle J, Horvai G (eds) (2000) In situ monitoring of aquatic systems. Chemical analysis and speciation. IUPAC series on analytical and physical chemistry of environmental systems. Wiley, ChichesterGoogle Scholar
  2. 2.
    Puigdomenech I (2001) Medusa: make equilibrium diagrams using sophisticated algorithms. Windows program. Royal Institute of Technology KTH, StockholmGoogle Scholar
  3. 3.
    Allison JD, Brown DS, Novo-Gradac KJ MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: version 3.0 user’s manual. EPA 600/3-91/021; U.S. 1991. Washington, DC.7, U.S. Environmental Protection Agency, Office of Research and DevelopmentGoogle Scholar
  4. 4.
    Kalis EJJ, Weng LP, Dousma F, Temminghoff EJM, van Riemsdijk WH (2006) Environ Sci Technol 40:955–961CrossRefGoogle Scholar
  5. 5.
    Batley GE, Apte SC, Stauber JL (2004) Aust J Chem 57:903–919CrossRefGoogle Scholar
  6. 6.
    Sigg L, Black F, Buffle J, Cao J, Cleven R, Davison W, Galceran J, Gunkel P, Kalis E, Kistler D, Martin M, Noel S, Nur Y, Odzak N, Puy J, van Riemsdijk WH, Temminghoff E, Tercier-Waeber ML, Toepperwien S, Town RM, Unsworth E, Warnken KW, Weng LP, Xue HB, Zhang H (2006) Environ Sci Technol 40:1934–1941CrossRefGoogle Scholar
  7. 7.
    Cheng T, De Schamphelaere K, Lofts S, Janssen C, Allen HE (2005) Anal Chim Acta 542:230–239CrossRefGoogle Scholar
  8. 8.
    Galceran J, Companys E, Puy J, Cecília J, Garcés JL (2004) J Electroanal Chem 566:95–109CrossRefGoogle Scholar
  9. 9.
    Companys E, Cecília J, Codina G, Puy J, Galceran J (2005) J Electroanal Chem 576:21–32CrossRefGoogle Scholar
  10. 10.
    Companys E, Puy J, Galceran J (2007) Environ Chem 4:347–354Google Scholar
  11. 11.
    Galceran J, Huidobro C, Companys E, Alberti G (2007) Talanta 71:1795–1803CrossRefGoogle Scholar
  12. 12.
    Companys E, Naval-Sanchez M, Martinez-Micaelo N, Puy J, Galceran J (2008) J Agric Food Chem 56:8296–8302CrossRefGoogle Scholar
  13. 13.
    Alberti G, Biesuz R, Huidobro C, Companys E, Puy J, Galceran J (2007) Anal Chim Acta 599:41–50CrossRefGoogle Scholar
  14. 14.
    Domingos RF, Huidobro C, Companys E, Galceran J, Puy J, Pinheiro JP (2008) J Electroanal Chem 617:141–148CrossRefGoogle Scholar
  15. 15.
    Huidobro C, Companys E, Puy J, Galceran J, Pinheiro JP (2007) J Electroanal Chem 606:134–140CrossRefGoogle Scholar
  16. 16.
    Galceran J, Chito D, Martinez-Micaelo N, Companys E, David C, Puy J (2010) The impact of high Zn0 concentrations on the application of AGNES to determine free Zn(II) concentration. J Electroanal Chem 638(1):131–142CrossRefGoogle Scholar
  17. 17.
    Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater. APHA, AWWA, WEF, WashingtonGoogle Scholar
  18. 18.
    Zirino A, Healy ML (1971) Limnol Oceanogr 16:773–778CrossRefGoogle Scholar
  19. 19.
    Lecomte J, Mericam P, Astruc A, Astruc M (1981) Anal Chem 53:2372–2374CrossRefGoogle Scholar
  20. 20.
    Pei JH, Tercier-Waeber ML, Buffle J (2000) Anal Chem 72:161–171CrossRefGoogle Scholar
  21. 21.
    Anderegg G (1960) Helvetica Chimica Acta 43:414–424CrossRefGoogle Scholar
  22. 22.
    Tichane RM, Bennett WE (1957) J Amer Chem Soc 79:1293–1296CrossRefGoogle Scholar
  23. 23.
    Smith EJ, Davison W, Hamilton-Taylor J (2002) Water Res 36:1286–1296CrossRefGoogle Scholar
  24. 24.
    US-EPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. US-EPA, Washington, EPA-821-R-02-012Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Francesca Zavarise
    • 1
  • Encarnació Companys
    • 2
  • Josep Galceran
    • 2
  • Giancarla Alberti
    • 1
  • Antonella Profumo
    • 1
  1. 1.Dipartimento di Chimica GeneraleUniversità di PaviaPaviaItaly
  2. 2.Departament de QuímicaUniversitat de LleidaLleidaSpain

Personalised recommendations