Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 243–256 | Cite as

Simultaneous determination by ultra-performance liquid chromatography–atmospheric pressure chemical ionization time-of-flight mass spectrometry of nitrated and oxygenated PAHs found in air and soot particles

  • Giovanni Mirivel
  • Véronique Riffault
  • Jean-Claude Galloo
Original Paper

Abstract

An ultra-performance liquid chromatographic-atmospheric pressure chemical ionization time-of-flight mass spectrometric (UPLC-APCIToFMS) method for rapid analysis of twelve nitrated polycyclic aromatic hydrocarbons (NPAHs) and nine oxygenated polycyclic aromatic hydrocarbons (OPAHs) in particle samples has been developed. The extraction step using pressurized liquid extraction was optimized by experimental design methods and the concentrated extracts were analyzed without further clean-up. Matrix effects resulting in suppression or enhancement of the response during the ionization step were not observed. The suitability of the developed method is demonstrated by analysis of six different particle samples including standard reference materials, atmospheric particles collected by a high-volume sampler at an urban background site, and a soot sample from a burner. Results from these measurements showed clear differences between the different kinds of samples. Concentrations from reference materials are in good agreement with those from previous studies. Additionally a clear seasonal trend could be observed in atmospheric NPAH and OPAH concentrations found in real samples, with higher concentrations in winter.

Keywords

Nitrated polycyclic aromatic hydrocarbons Oxygenated polycyclic aromatic hydrocarbons Experimental design Ultra-high-performance liquid chromatography (UPLC) Time-of-flight mass spectrometry (ToFMS) Standard reference materials (SRM) 

Notes

Acknowledgements

The authors wish to thank the Research Institute of Industrial Environment (IRENI) which is financed by the Communauté Urbaine de Dunkerque, the Nord-Pas de Calais Regional Council, the French Ministry of Education and Research, and European funds (FEDER). The authors are also grateful to Isabelle Fronval and Benoît Herbin for their technical support. Yuri Bedjanian (ICARE/CNRS, Orléans, France) is acknowledged for graciously supplying the soot combustion sample.

Supplementary material

216_2009_3416_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1632 kb)
216_2009_3416_MOESM2_ESM.pdf (6 kb)
Online Resource 1 LC/APCI/ToF-MS accurate mass measurements for a standard solution of 21 NPAHs and OPAHs in MeOH (PDF 6 kb)
216_2009_3416_MOESM3_ESM.pdf (6 kb)
Online Resource 2 Calibration curve, correlation coefficient (r2), test range and instrumental LODs for 21 analytes in MeOH solution (PDF 6 kb)

References

  1. 1.
    Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1994) Water Air Soil Pollut 60:279–300CrossRefGoogle Scholar
  2. 2.
    Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Cogliano V (2005) Lancet Oncol 6:931–932CrossRefGoogle Scholar
  3. 3.
    Durant JL, Lafleur AL, Plummer EF, Taghizadeh K, Busby WF, Thilly WG (1998) Environ Sci Technol 32:1894–1906CrossRefGoogle Scholar
  4. 4.
    Lewtas J, Chuang J, Nishioka M, Petersen B (1990) International Journal of Environmental Analytical Chemistry 39:245–256CrossRefGoogle Scholar
  5. 5.
    Koeber R, Bayona JM, Niessner R (1999) Environ Sci Technol 33:1552–1558CrossRefGoogle Scholar
  6. 6.
    Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2006) J Chromatogr A 1121:106–113CrossRefGoogle Scholar
  7. 7.
    Allen JO, Dookeran NM, Taghizadeh K, Lafleur AL, Smith KA, Sarofim AF (1997) Environ Sci Technol 31:2064–2070CrossRefGoogle Scholar
  8. 8.
    Bamford HA, Baker JE (2003) Atmos Environ 37:2077–2091CrossRefGoogle Scholar
  9. 9.
    Grosse S, Letzel T (2007) J Chromatogr A 1139:75–83CrossRefGoogle Scholar
  10. 10.
    Schauer C, Niessner R, Pöschl U (2004) Anal Bioanal Chem 378:725–736CrossRefGoogle Scholar
  11. 11.
    Certificate of Analysis, Standard Reference Material (SRM) 1649a, Urban Dust, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2007Google Scholar
  12. 12.
    Certificate of Analysis, Standard Reference Material (SRM) 1648a, Urban Particulate Matter, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2008Google Scholar
  13. 13.
    NIES Certified Reference Material No. 8 “Vehicle Exhaust Particulates” National Institute of Environmental Studies, JapanGoogle Scholar
  14. 14.
    Certificate of Analysis, Standard Reference Material (SRM) 1650b, Diesel Particulate Matter, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2006Google Scholar
  15. 15.
    Lelièvre S, Bedjanian Y, Laverdet G, Le Bras G (2004) J Phys Chem A 108:10807–10817CrossRefGoogle Scholar
  16. 16.
    Mirivel G, Riffault V, Galloo J-C (2009) J Chromatogr A 1216:6481–6489CrossRefGoogle Scholar
  17. 17.
    Lintelmann J, Fischer K, Matuschek G (2006) J Chromatogr A 1133:241–247CrossRefGoogle Scholar
  18. 18.
    Barreto RP, Albuquerque FC, Netto ADP (2007) J Chromatogr A 1163:219–227CrossRefGoogle Scholar
  19. 19.
    Bonfanti L, Careri M, Mangia A, Manini P, Maspero M (1996) J Chromatogr A 728:359–369CrossRefGoogle Scholar
  20. 20.
    Karancsi T, Slégel P (1999) Journal of Mass Spectrometry 34:975–977CrossRefGoogle Scholar
  21. 21.
    Delhomme O, Millet M, Herckes P (2008) Talanta 74:703–710CrossRefGoogle Scholar
  22. 22.
    Kameda T, Goto T, Toriba A, Tang N, Hayakawa K (2009) J Chromatogr A 1216:6758–6761CrossRefGoogle Scholar
  23. 23.
    Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE (2003) Chemosphere 50:575–587CrossRefGoogle Scholar
  24. 24.
    Chiu C, Miles W (1996) Polycyclic Aromatic Compounds 6:307–314CrossRefGoogle Scholar
  25. 25.
    Cho AK, Di Stefano E, You Y, Rodriguez CE, Schmitz DA, Kumagai Y, Miguel AH, Eiguren-Fernandez A, Kobayashi T, Avol E, Froines JR (2004) Aerosol SciTechnol 38(S1):68–81CrossRefGoogle Scholar
  26. 26.
    Crimmins BS, Baker JE (2006) Atmos Environ 40:6764–6779CrossRefGoogle Scholar
  27. 27.
    Fernandez P, Bayona JM (1992) J Chromatogr A 625:141–149CrossRefGoogle Scholar
  28. 28.
    Oda J, Maeda I, Mori T, Yasuhara A, Saito Y (1998) Environmental Technology 19:961–976CrossRefGoogle Scholar
  29. 29.
    Turrio-Baldassarri L, Battistelli CL, Iamiceli AL (2003) Anal Bioanal Chem 375:589–595CrossRefGoogle Scholar
  30. 30.
    del Rosario Sienra M (2006) Atmos Environ 40:2374–2384CrossRefGoogle Scholar
  31. 31.
    Schnelle-Kreis J, Sklorz M, Peters A, Cyrys J, Zimmermann R (2005) Atmos Environ 39:7702–7714Google Scholar
  32. 32.
    Schnelle-Kreis J, Gebefugi I, Welzl G, Jaensch T, Kettrup A (2001) Atmos Environ 35:71–81CrossRefGoogle Scholar
  33. 33.
    Dimashki M, Harrad S, Harrison RM (2000) Atmos Environ 34:2459–2469CrossRefGoogle Scholar
  34. 34.
    Ladji R, Yassaa N, Cecinato A, Meklati BY (2007) Atmos Res 86:249–260CrossRefGoogle Scholar
  35. 35.
    Marino F, Cecinato A, Siskos PA (2000) Chemosphere 40:533–537CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Giovanni Mirivel
    • 1
    • 2
  • Véronique Riffault
    • 1
    • 2
  • Jean-Claude Galloo
    • 1
    • 2
  1. 1.University Lille Nord de FranceLilleFrance
  2. 2.Ecole des Mines de Douai, Département Chimie et EnvironnementDouaiFrance

Personalised recommendations