Analytical and Bioanalytical Chemistry

, Volume 396, Issue 6, pp 2151–2164 | Cite as

Design of multiplex calibrant plasmids, their use in GMO detection and the limit of their applicability for quantitative purposes owing to competition effects

  • Frédéric Debode
  • Aline Marien
  • Eric Janssen
  • Gilbert BerbenEmail author
Original Paper


Five double-target multiplex plasmids to be used as calibrants for GMO quantification were constructed. They were composed of two modified targets associated in tandem in the same plasmid : (1) a part of the soybean lectin gene and (2) a part of the transgenic construction of the GTS40-3-2 event. Modifications were performed in such a way that each target could be amplified with the same primers as those for the original target from which they were derived but such that each was specifically detected with an appropriate probe. Sequence modifications were done to keep the parameters of the new target as similar as possible to those of its original sequence. The plasmids were designed to be used either in separate reactions or in multiplex reactions. Evidence is given that with each of the five different plasmids used in separate wells as a calibrant for a different copy number, a calibration curve can be built. When the targets were amplified together (in multiplex) and at different concentrations inside the same well, the calibration curves showed that there was a competition effect between the targets and this limits the range of copy numbers for calibration over a maximum of 2 orders of magnitude. Another possible application of multiplex plasmids is discussed.


Genetically modified organism Quantification Plasmid Competition Multiplex Internal control 



This research was done within a Belgian research project (S-6140) financed by DG4 and DG6 of the former Belgian Federal Ministry of Agriculture. We are grateful to Aurélie Hosselet (HECE Fleurus) for her technical help and Nicole Wellens (Isogen Life Sciences, De Meern, the Netherlands) for advice with pyrosequencing.


  1. 1.
    Permingeat HR, Reggiardo MI, Vallejos RH (2002) J Agric Food Chem 50:4431–4436CrossRefGoogle Scholar
  2. 2.
    James D, Schmidt AM, Wall E, Green M, Masri S (2003) J Agric Food Chem 51:5829–5834CrossRefGoogle Scholar
  3. 3.
    Singh CK, Ojha A, Kachru DN (2007) J AOAC Int 90:1517–1525Google Scholar
  4. 4.
    Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2001) Shokuhin Eiseigaku Zasshi 42:24–32CrossRefGoogle Scholar
  5. 5.
    García-Cañas V, González R, Cifuentes A (2004) Electrophoresis 25:2219–2226CrossRefGoogle Scholar
  6. 6.
    Germini A, Zanetti A, Salati C, Rossi S, Forre C, Schmid S, Marchelli R, Fogher C (2004) J Agric Food Chem 52:3275–3280CrossRefGoogle Scholar
  7. 7.
    Shrestha HK, Hwu KK, Wang SJ, Liu LF, Chang MC (2008) J Agric Food Chem 56:8962–8968CrossRefGoogle Scholar
  8. 8.
    Hernandez M, Esteve T, Pla M (2005) J Agric Food Chem 53:7003–7009CrossRefGoogle Scholar
  9. 9.
    Heide BR, Heir E, Holck A (2008) Eur Food Res Technol 227:527–535CrossRefGoogle Scholar
  10. 10.
    Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) J Agric Food Chem 53:9713–9721CrossRefGoogle Scholar
  11. 11.
    Hamels S, Glouden T, Gillard K, Mazzara M, Debode F, Foti N, Sneyers M, Teresa E, Pla M, Berben G, Moens W, Bertheau Y, Audeon C, van Den Eede G, Remacle J (2009) Eur Food Res Technol 228:1438–2377CrossRefGoogle Scholar
  12. 12.
    Xu J, Zhu SF, Miao HZ, Huang WS, Qiu MY, Huang Y, Fu XP, Li Y (2007) J Agric Food Chem 55:5575–5579CrossRefGoogle Scholar
  13. 13.
    Nadal A, Coll A, La Paz JL, Esteve T, Pla M (2006) Electrophoresis 27:3879–3888CrossRefGoogle Scholar
  14. 14.
    Hernandez M, Rodriguez-Lazaro D, Esteve T, Prat S, Pla M (2003) Anal Biochem 323:164–170CrossRefGoogle Scholar
  15. 15.
    Huang P, Pan TZ (2004) J Agric Food Chem 52:3264–3268CrossRefGoogle Scholar
  16. 16.
    Leimanis S, Hernández M, Fernández S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomènech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139CrossRefGoogle Scholar
  17. 17.
    Rudi K, Rud I, Holck A (2003) Nucleic Acids Res 31(11):e62CrossRefGoogle Scholar
  18. 18.
    Foti N, Onori R, Donnarumma E, De Santis B, Miraglia M (2006) Eur Food Res Technol 222:209–216CrossRefGoogle Scholar
  19. 19.
    Weighardt F, Barbati C, Paoletti C, Querci M, Kay S, De Beuckeleer M, Van den Eede G (2004) J AOAC Int 87:1342–1355Google Scholar
  20. 20.
    Trapmann S, Catalani P, Conneely P, Corbisier P, Gancberg D, Hannes E, Guern L, Kramer GN (2002) The certification of reference materials of dry-mixed soya powder with different mass fractions of Roundup Ready soya. Certified reference materials IRMM-410-S. European Commission, DG-JRC, IRMM.
  21. 21.
    European Commission (2004) Recommendation 2004/787/EC. Off J Eur Union L 348:18–24Google Scholar
  22. 22.
    Charels D, Broeders S, Corbisier P, Trapmann S, Schimmels H, Linsinger T, Emons H (2007) J Agric Food Chem 55:3258–3267CrossRefGoogle Scholar
  23. 23.
    Charels D, Broeders S, Corbisier P, Trapmann S, Schimmels H, Linsinger T, Emons H (2007) J Agric Food Chem 55:3268–3274CrossRefGoogle Scholar
  24. 24.
    Burns M, Corbisier P, Wiseman G, Valdivia H, McDonald P, Bowler P, Ohara K, Schimmel H, Charels D, Damant A, Harris N (2006) Eur Food Res Technol 224:249–258CrossRefGoogle Scholar
  25. 25.
    Taverniers I, Van Bockstaele E, De Loose M (2004) Anal Bioanal Chem 378:1198–1207CrossRefGoogle Scholar
  26. 26.
    Block A, Schwarz (2003) Eur Food Res Technol 216:421–427Google Scholar
  27. 27.
    Mattarucchi E, Weighardt F, Barbati C, Querci M, Van den Eede G (2005) Eur Food Res Technol 221:511–519CrossRefGoogle Scholar
  28. 28.
    Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, Toyoda M, Hino A (2002) J AOAC Int 85:1119–1126Google Scholar
  29. 29.
    Yang L, Pan A, Zhang K, Yin C, Qian B, Chen J, Huang C, Zhang D (2005) Transgenic Res 14:817–831CrossRefGoogle Scholar
  30. 30.
    Kuribara H, Shindo Y, Matsuoka T, Takubo K, Futo S, Aoki N, Hirao T, Akiyama H, Goda Y, Toyoda M, Hino A (2002) J AOAC Int 85:1077–1089Google Scholar
  31. 31.
    Yang L, Guo J, Pan A, Zhang H, Zhang K, Wang Z, Zhang D (2007) J Agric Food Chem 55:15–24CrossRefGoogle Scholar
  32. 32.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  33. 33.
    Association Française de Normalisation (2005) ISO 21570. Foodstuffs - methods of analysis for the detection of genetically modified organisms and derived products - quantitative nucleic acid based methods. Association Française de Normalisation, ParisGoogle Scholar
  34. 34.
    Querci M, Kleter G, Malingreau JP, Broll H, Van den Eede G (2008) Scientific and technical contribution to the development of an overall health strategy in the area of GMOs. JRC-IHCP reference reports. Report EUR 23542 EN.
  35. 35.
    Love JL, Scholes P, Gilpin B, Savill M, Lin S, Samuel L (2006) J Microbiol Method 67:349–356CrossRefGoogle Scholar
  36. 36.
    European Network of GMO Laboratories (2008) Definition of minimum performance requirements for analytical methods of GMO testing. EU DG-JRC ENGL method performance requirements. EU DG-JRC, Ispra.
  37. 37.
    Huang C-C, Pan T-Z (2005) J Agric Food Chem 53:3833–3839CrossRefGoogle Scholar
  38. 38.
    Rønning SB, Vaitilingom M, Berdal KG, Holst-Jensen A (2003) Eur Food Res Technol 216:347–354Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Frédéric Debode
    • 1
  • Aline Marien
    • 1
  • Eric Janssen
    • 1
  • Gilbert Berben
    • 1
    Email author
  1. 1.Department of Quality of Agricultural ProductsWalloon Agricultural Research Center (CRA-W)GemblouxBelgium

Personalised recommendations