Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 63–75 | Cite as

Direct chiral determination of free amino acid enantiomers by two-dimensional liquid chromatography: application to control transformations in E-beam irradiated foodstuffs

  • Vanesa Guillén-Casla
  • María Eugenia León-González
  • Luis Vicente Pérez-Arribas
  • Luis María Polo-Díez
Original Paper

Abstract

Changes in free amino acids content and its potential racemization in ready-to-eat foods treated with E-beam irradiation between 1 and 8 kGy for sanitation purposes were studied. A simple heart cut two-dimensional high performance liquid chromatographic method (LC–LC) for the simultaneous enantiomeric determination of three pairs of amino acids used as markers (tyrosine, phenylalanine, and tryptophan) is presented. The proposed method involves the use of two chromatographs in an LC–LC achiral–chiral coupling. Amino acids and their decomposition products were firstly separated in a primary column (C18) using a mixture of ammonium acetate buffer (20 mM, pH 6) (94%) and methanol (6%) as the mobile phase. Then, a portion of each peak was transferred by heart cutting through a switching valve to a teicoplanin-chiral column. Methanol (90%)/water (10%) was used as the mobile phase. Ultraviolet detection was at 260 nm. Detection limits were between 0.16 and 3 mg L−1 for each enantiomer. Recoveries were in the range 79–98%. The LC–LC method combined with the proposed sample extraction procedure is suitable for complex samples; it involves an online cleanup, and it prevents degradation of protein, racemization of L-enantiomers, and degradation of tryptophan. Under these conditions, D-amino acids were not found in any of the analyzed samples at detection levels of the proposed method.

Figure

Two-dimensional direct chiral liquid chromatograms of tyrosine, phenilalanine and tryptophan

Keywords

Amino acids/peptides Chiral analysis Foods/beverages HPLC Multidimensional liquid chromatography Column switching 

Abbreviations

aa

Amino acid

CSP

Chiral stationary phase

e.e

Enantiomeric excess

ER1/2

Enantiomeric ratio

HPLC

High performance liquid chromatography

LC

Liquid chromatography

LC–LC

Heart cut two-dimensional high performance liquid chromatography

ODS

Octadecyl silane

SD

Standard deviation

TEAA

Triethylamine acetate

Notes

Acknowledgements

The present work has received financial support from the project TEMINYSA/CM (S-0505/AGR-0314) funded by the Dirección General de Universidades e Investigación, Consejería de Educación, Comunidad de Madrid, and the CTQ2008-05263 proyect founded by the Ministerio de Ciencia e Innovación. Vanesa Guillén Casla also wishes to thank the Comunidad de Madrid for the support through a “Personal Investigador de Apoyo” grant.

References

  1. 1.
    Cabeza MC, Cambero I, De la Hoz L, Ordóñez JA (2007) Innov Food Sci Emerg Technol 8:209Google Scholar
  2. 2.
    Medina M, Cabeza MC, Bravo D, Cambero I, Montiel R, Ordoñez JA, Nuñez M, Hoz L (2009) Food Microbiol 26:224CrossRefGoogle Scholar
  3. 3.
    Cabeza MC, de la Hoz L, Velasco R, Cambero MI, Ordoñez JA (2009) Meat Sci 83:320CrossRefGoogle Scholar
  4. 4.
    Brennan JG (2006) Food processing handbook, 1st edn. WILEY-VCH Verlag Gmbh & Co. Kgaa, Weinheim, p 147Google Scholar
  5. 5.
    Smith JS, Pillai S (2004) Food Technol 58:48Google Scholar
  6. 6.
    Brewer S (2004) Meat Sci 68:1CrossRefGoogle Scholar
  7. 7.
    Jo C, Ahn DU (2000) J Food Sci 65:612CrossRefGoogle Scholar
  8. 8.
    Barba C, Calvo MM, Herraiz M, Santa-María G (2009) Food Chem 114:1517CrossRefGoogle Scholar
  9. 9.
    Rosales-Conrado N, León González ME, Pérez Arribas LV, Polo Díez LM (2008) Anal Bioanal Chem 391:1433CrossRefGoogle Scholar
  10. 10.
    Matloubi H, Aflaki F (2004) Hadjiezadegan 17:133Google Scholar
  11. 11.
    Byun M-W, Yook H-S, Kwon O-J, Kwang I-J (1997) Radiat Phys Chem 49:483CrossRefGoogle Scholar
  12. 12.
    Erkan N, Özden Ö (2007) Radiat Phys Chem 76:1636CrossRefGoogle Scholar
  13. 13.
    Krack C, Sontag G, Solar S (1999) Food Res Int 32:43CrossRefGoogle Scholar
  14. 14.
    Van Wickern B, Moiler B, Simat T, Steinhart H (1997) J Chromatogr A 786:57CrossRefGoogle Scholar
  15. 15.
    Kleeberg KK, Müller A, Simat TJ, Steinhart H (2003) Adv Exp Med Biol 527:677CrossRefGoogle Scholar
  16. 16.
    Csapó J, Varga-Visi E, Lóki K, Albert C, Salamon S (2008) Amino Acids 34:287CrossRefGoogle Scholar
  17. 17.
    Giufrrida A, Tabera L, González R, Cuciontta V, Cifuentes A (2008) J Chromatogr B 875:243CrossRefGoogle Scholar
  18. 18.
    Brückner H, Lagner M, Lüpke M, Westhauser T, Godel H (1995) J Chromatogr A 697:229CrossRefGoogle Scholar
  19. 19.
    Gil-Díaz M, Santos-Delgado MJ, Rubio-Barroso S, Polo-Díez LM (2009) Meat Sci 82:24CrossRefGoogle Scholar
  20. 20.
    Cavani L, Ciavatta C, Carlo G (2003) J Chromatogr A 985:463CrossRefGoogle Scholar
  21. 21.
    D’Aniello A, Fiore MM, Fisher GH, Milone A, Seleni A, D’Aniello S, Perna AF, Ingrosso D (2000) FASEB J 14:699Google Scholar
  22. 22.
    Kreidler D, Czesla H, Schurig V (2008) J Chromatogr B 875:208CrossRefGoogle Scholar
  23. 23.
    Ilisz I, Berkecz R, Peter A (2008) J Pharm Biomed 47:1CrossRefGoogle Scholar
  24. 24.
    Oberleitner WR, Maier NM, Lindner W (2002) J Chromatogr A 960:97CrossRefGoogle Scholar
  25. 25.
    Lämmerhoher M, Lindner W (1996) J Chromatogr A 741:33CrossRefGoogle Scholar
  26. 26.
    Weng W, Wang QH, Yao BX, Zeng QL (2004) J Chromatogr A 1042:81CrossRefGoogle Scholar
  27. 27.
    Stenberg M, Marco-Varga G, Öste R (2002) Food Chem 79:507CrossRefGoogle Scholar
  28. 28.
    Miyoshi Y, Hamase H, Tojo Y, Mita M, Konno R, Zaitsu K (2009) J Chromatogr B 877:2506CrossRefGoogle Scholar
  29. 29.
    Péter A, Török R, Wright K, Wakselman M, Mazaleyrat JP (2003) J Chromatogr A 1021:1CrossRefGoogle Scholar
  30. 30.
    Hsiao Y-L, Chen S (2009) Chromatographia 70:1031CrossRefGoogle Scholar
  31. 31.
    Boesten JMM, Berkheji M, Schoemaker HE, Hiemstra H, Duchateau ALL (2006) J Chromatogr A 1108:26CrossRefGoogle Scholar
  32. 32.
    Poplewska I, Kramarz R, Patkwski W, Seidel Morgensterm A, Antos D (2008) J Chromatogr A 1192:130CrossRefGoogle Scholar
  33. 33.
    Péter A, Töroka G, Armstrongh DW, Tóthc G, Tourwéd D (2000) J Chromatogr A 904:1CrossRefGoogle Scholar
  34. 34.
    Xiao TL, Tesarova E, Anderson JL, Egger M, Armstrong DW (2006) J Sep Sci 29:429CrossRefGoogle Scholar
  35. 35.
    Welsch T, Schmidtkunz C, Müller B, Meier F, Chlup M, Köhne A, Lämmerhofe M, Lindner W (2007) Anal Bioanal Chem 388:1717CrossRefGoogle Scholar
  36. 36.
    Mondello L, Lewis AC, Bartle KD (2002) Multidimensional chromatography, 1st edn. Wiley, Chichester, p 109Google Scholar
  37. 37.
    Hamase H, Morikawa A, Ohgusua T, Lindner W, Zaitsu K (2007) J Chromatogr A 1143:105CrossRefGoogle Scholar
  38. 38.
    Lang W, Masucci JA, Caldwell GW, Hageman W, Hall J, Jones WJ, Rafferty BM (2004) Anal Biochem 333:79CrossRefGoogle Scholar
  39. 39.
    Guillén-Casla V, Pérez-Arribas LV, León-González ME, Polo-Díez LM (2008) J Agric Food Chem 56:2303CrossRefGoogle Scholar
  40. 40.
    Ali I, Aboul-Enein HY (2004) Chiral pollutants: distribution, toxicity and analysis by chromatography and capillary electrophoresis, 1st edn. Wiley, Chichester, p 1Google Scholar
  41. 41.
    Hultmann L, Bencze Rora AM, Steinsland I, Skara T, Rustad T (2004) Food Chem 85:377CrossRefGoogle Scholar
  42. 42.
    Ruiz J, García C, Díaz MC, Cava R, Tejeda JF, Ventanas J (1999) Food Res Int 32:643CrossRefGoogle Scholar
  43. 43.
    Min JS, Lee SO, Jang A, Jo C, Lee M (2007) Poult Sci 86:2034CrossRefGoogle Scholar
  44. 44.
    Lacroix M, Ouattara B (2000) Food Res Int 33:719CrossRefGoogle Scholar
  45. 45.
    Csapó J, Varga-Visi É, Lóki K, Albert Cs (2006) Chromatogria 63:S101CrossRefGoogle Scholar
  46. 46.
    Ravindran G, Bryden WL (2005) Food Chem 89:309CrossRefGoogle Scholar
  47. 47.
    Stam P, Booger I, Plugge W, Duchateau ALL (2009) Chromatographia 69:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Vanesa Guillén-Casla
    • 1
  • María Eugenia León-González
    • 1
  • Luis Vicente Pérez-Arribas
    • 1
  • Luis María Polo-Díez
    • 1
  1. 1.Dpto. Química Analítica, Facultad de Ciencias QuímicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations