Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 223–231 | Cite as

Determination of heterocyclic amines in urine samples by capillary liquid chromatography with evaporated light-scattering detection

  • Fernando De Andrés
  • Mohammed Zougagh
  • Gregorio Castañeda
  • Angel Ríos
Original Paper

Abstract

A rapid and simple method for separation and detection of six heterocyclic aromatic amines (2-amino-1-methyl-6-phenylimidazo [4,5-b]-pyridine, 2-amino-1-methyl-imidazo [4,5-f]-quinoline, 2-amino-3,8-dimethyl-imidazo [4,5-f]-quinoxaline, 2-amino-3,7,8-trimethyl-imidazo [4,5-f]-quinoxaline, 2-amino-3,4,8-trimethyl-imidazo [4,5-f]-quinoxaline, and 2-amino-3,4-dimethyl-imidazo [4,5-f]-quinoline) in human urine samples is proposed to reflect daily intake and recent HAAs exposure. This method comprises previous clean-up and preconcentration of the analytes on Strata-X reversed phase extraction cartridges followed by capillary liquid chromatography (CLC) and evaporative light-scattering detection (ELSD). A mobile phase of acetonitrile and ammonium acetate 35 mM at pH 5.15 through a gradient of composition and a flow rate of 15 μL min−1 resulted in good separations of the analytes. Temperature and gas pressure were optimized for detection. The CLC-ELSD allows the separation and quantification of HAAs with good resolution, precision, and sensitivity. The usefulness of the proposed method was demonstrated by the analysis of synthetic and natural human urine samples spiked with different concentration levels of heterocyclic amines.

Keywords

Capillary liquid chromatography–evaporative light-scattering detection Strata-X cartridges Heterocyclic aromatic amines Human urine samples 

Notes

Acknowledgments

The Spanish Ministry of Science and Innovation (MICINN) and JJCC Castilla-La Mancha are gratefully acknowledged for funding this work with Grants CTQ2007-61830 and PCC08-0015-0722, respectively. The support given through a “INCRECYT” research contract to M. Zougagh is also acknowledged.

References

  1. 1.
    Felton JS, Jägerstad M, Knize MG, Skog K, Wakabayashi K (2000) In: Nagao M, Sugimura T (eds) Food borne carcinogens: heterocyclic amines. Wiley, New YorkGoogle Scholar
  2. 2.
    Nagao M (1999) A new approach to risk estimation of food-borne carcinogens–heterocyclic amines-based on molecular information. Mutat Res 431:3–12CrossRefGoogle Scholar
  3. 3.
    Adamson RH, Snyderwine EG, Thorgeirsson UP, Schut HAJ, Turesky RJ, Thorgeirsson SS et al (1991) In: Ernster L et al (eds) Xenobiotics and cancer. Japan Science Society Press, Tokyo, pp 289–301Google Scholar
  4. 4.
    Dooley KL, Von Tungeln LS, Bucci T, Fu PP, Kadlubar FF (1992) Comparative carcinogenicity of 4-aminobiphenyl and the food pyrolysates, Glu-P-1, IQ, PhIP, and MeIQx in the neonatal B6C3F1 male mouse. Cancer Lett 62:205–209CrossRefGoogle Scholar
  5. 5.
    Wakabayashi K, Ushiyama H, Takahashi M, Nukaya H, Kim SB, Hirose M, Ochiai M, Sugimura T, Nagao M (1993) Exposure to heterocyclic amines. Environ Health Perspect 99:129–134CrossRefGoogle Scholar
  6. 6.
    Ohgaki H, Adamson RH, Synderwine EG, Nakagama H, Shirai T, Katsumi I, Ito N (2000) In: Nagao M, Sugimura T (eds) Food borne carcinogens: heterocyclic amines. Wiley, New YorkGoogle Scholar
  7. 7.
    Sinha R, Kulldorff M, Chow WH, Denobile J, Rothman N (2001) Dietary intake of heterocyclic amines, meat-derived mutagenic activity, and risk of colorectal adenomas. Cancer Epidemiol Biomark Prev 10:559–562Google Scholar
  8. 8.
    Norrish AE, Ferguson LR, Knize MG, Felton JS, Sharpe SJ, Jackson RT (1999) Heterocyclic amine content of cooked meat and risk of prostate cancer. J Natl Cancer Inst 91:2038–2044CrossRefGoogle Scholar
  9. 9.
    IARC (1993) Monographs on the evaluation of carcinogenic risk to humans; some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins, vol. 56, Lyon.Google Scholar
  10. 10.
    Sugimura T (1997) Overview of carcinogenic heterocyclic amines. Mutat Res 376:211–219CrossRefGoogle Scholar
  11. 11.
    Jägerstad M, Skog K, Grivas S, Olsson K (1991) Formation of heterocyclic amines using model systems. Mutat Res 259:219–233CrossRefGoogle Scholar
  12. 12.
    Skog K, Solyakov A (2002) Heterocyclic amines in poultry products: a literature review. Food Chem Toxicol 40:1213–1221CrossRefGoogle Scholar
  13. 13.
    Busquets R, Puignou L, Galceran T (2004) Occurrence of heterocyclic amines in several home-cooked meat dishes of the Spanish diet. J Chromatogr B 802:79–86CrossRefGoogle Scholar
  14. 14.
    Thiébaud HP, Knize MG, Kuzmicky PA, Hsieh DP, Felton JS (1995) Airborne mutagens produced by frying beef, pork and a soy-based food. Food Chem Toxicol 33:821–828CrossRefGoogle Scholar
  15. 15.
    Richling E, Decker C, Häring D, Herderich M, Schreier P (1997) Analysis of heterocyclic aromatic amines in wine by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 791:71–77CrossRefGoogle Scholar
  16. 16.
    Olsson JC, Dyremark A, Karlberg B (1997) Determination of heterocyclic aromatic amines by micelar electrokinetic chromatography with amperometric detection. J Chromatogr A 765:329–335CrossRefGoogle Scholar
  17. 17.
    Casal S, Mendes E, Fernandes JO, Oliveira MBPP, Ferreira MA (2004) Analysis of heterocyclic aromatic amines in foods by gas chromatography-mass spectrometry as their tert-butyldimethylsilyl derivatives. J Chromatogr A 1040:105–114CrossRefGoogle Scholar
  18. 18.
    Manabe S, Tohyama K, Wada O, Aramaki T (1991) Detection of a carcinogen, 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP), in cigarette smoke condensate. Carcinogenesis 12:1945–1947CrossRefGoogle Scholar
  19. 19.
    Wu J, Wong MK, Lee HK, Ong CN (1995) Capillary zone electrophoretic determination of heterocyclic aromatic amines in rain. J Chromatogr Sci 33:712–716CrossRefGoogle Scholar
  20. 20.
    Sasaki Y, Kise H, Kikuchi M (1996) Monitoring and identification of Ames mutagenic compounds in river water. Environ Mutagen Res 18:21–27Google Scholar
  21. 21.
    Manabe S, Wada O, Morita M, Izumikawa S, Asakuno K, Suzuki H (1992) Occurrence of carcinogenic amino-alpha-carbolines in some environmental samples. Environ Pollut 75:301–305CrossRefGoogle Scholar
  22. 22.
    Knize MG, Kulp KS, Malfatti MA, Salmon CP, Felton JS (2001) Liquid chromatography-tandem mass spectrometry method of urine analysis for determining human variation in carcinogen metabolism. J Chromatogr A 914:95–103CrossRefGoogle Scholar
  23. 23.
    Friesen MD, Rothman N, Strickland PT (2001) Concentration of 2-amino-1-methyl-6-phenylimidazo(4, 5-b)pyridine (PhIP) in urine and alkali-hydrolyzed urine after consumption of charbroiled beef. Cancer Lett 173:43–51CrossRefGoogle Scholar
  24. 24.
    Strickland PT, Qian Z, Friesen MD, Rothman N, Sinha R (2001) Measurement of 2-amino-1-methyl-6-phenylimidazo(4, 5-b)pyridine (PhIP) in acid-hydrolyzed urine by high-performance liquid chromatography with fluorescence detection. Biomarkers 6:313–325CrossRefGoogle Scholar
  25. 25.
    Shah FU, Barri T, Jönsson JA, Skog K (2008) Determination of heterocyclic aromatic amines in human urine by using hollow-fibre supported liquid membrane extraction and liquid chromatography-ultraviolet detection system. J Chromatogr B 870:203–208CrossRefGoogle Scholar
  26. 26.
    Bang J, Frandsen H, Skog K (2004) Blue Chitin columns for the extraction of heterocyclic amines from urine samples. Chromatographia 60:651–655CrossRefGoogle Scholar
  27. 27.
    Viberg P, Wahlund KG, Skog K (2006) On-line capillary based quantitative analysis of a heterocyclic amine in human urine. J Chromatogr A 1133:347–352CrossRefGoogle Scholar
  28. 28.
    Van Dyck MMC, Rollmann B, De Meester C (1995) Quantitative estimation of heterocyclic aromatic amines by ion-exchange chromatography and electrochemical detection. J Chromatogr A 697:377–382CrossRefGoogle Scholar
  29. 29.
    Knize MG, Salmon CP, Hopmans EC, Felton JS (1997) Analysis of foods for heterocyclic aromatic amine carcinogens by solid-phase extraction and high-performance liquid chromatography. J Chromatogr A 763:179–185CrossRefGoogle Scholar
  30. 30.
    Martín-Calero A, Ayala JH, González V, Afonso AM (2007) Determination of less polar heterocyclic amines in meat extracts: fast sample preparation method using solid-phase microextraction prior to high-performance liquid chromatography-fluorescence quantification. Anal Chim Acta 582:259–266CrossRefGoogle Scholar
  31. 31.
    Cárdenes L, Ayala JH, Afonso AM, González V (2004) Solid-phase microextraction coupled with high-performance liquid chromatography for the analysis of heterocyclic aromatic amines. J Chromatogr A 1030:87–93CrossRefGoogle Scholar
  32. 32.
    Cárdenes L, Martín-Calero A, Ayala JH, González V, Afonso AM (2006) Experimental design optimization of solid-phase microextraction conditions for the determination of heterocyclic aromatic amines by high-performance liquid chromatography. Anal Lett 39:405–423CrossRefGoogle Scholar
  33. 33.
    Mourey TH, Oppenheimer LE (1984) Principles of operation of an evaporative light-scattering detector for liquid chromatography. Anal Chem 56:2427–2434CrossRefGoogle Scholar
  34. 34.
    Kohler M, Haerdi W, Christen P, Veuthey JL (1997) The evaporative light scattering detector: some applications in pharmaceutical analysis. Trends Anal Chem 16:475–484CrossRefGoogle Scholar
  35. 35.
    Charlesworth JM (1978) Evaporative analyzer as a mass detector for liquid chromatography. Anal Chem 50:1414–1420CrossRefGoogle Scholar
  36. 36.
    Dreux M, Lafosse M (1990) Light scattering by solid or liquid microparticles in the gas phase: a new mode of detection for HPLC (high-performance liquid chromatography) and SPC (supercritical-phase chromatography). Evaporative light scattering detector - concept, advantages, and limits. Spectra 151:16–21, 2000Google Scholar
  37. 37.
    Kakiyama G, Hosoda A, Iida T, Fujimoto Y, Goto T, Manoc N, Goto J, Nambara T (2006) A direct method for the separation and quantification of bile acid acyl glycosides by high-performance liquid chromatography with an evaporative light scattering detector. J Chromatogr A 1125:112–116CrossRefGoogle Scholar
  38. 38.
    Yan S, Luo G, Wang Y, Chenga Y (2006) Simultaneous determination of nine components in Qingkailing injection by HPLC/ELSD/DAD and its application to the quality control. J Pharm Biomed 40:889–895CrossRefGoogle Scholar
  39. 39.
    Clarot I, Storme-Paris I, Chaminade P, Estevenon O, Nicolas A, Rieutord A (2009) Simultaneous quantitation of tobramycin and colistin sulphate by HPLC with evaporative light scattering detection. J Pharm Biomed 50:64–67CrossRefGoogle Scholar
  40. 40.
    ICH Guidelines Q2(R1) (2007) Note for guidance on validation of analytical procedures: text and methodology Ref. CPMP/ICH/381/95.Google Scholar
  41. 41.
    Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression. FASEB J 1:365–374Google Scholar
  42. 42.
    Miller JN, Miller JN (2000) Statistics and chemometrics for analytical chemistry. Pearson Prentice Hall, UKGoogle Scholar
  43. 43.
    Bermudo E, Ruiz-Calero V, Puignou L, Galceran MT (2005) Analysis of heterocyclic amines in chicken by liquid chromatography with electrochemical detection. Anal Chim Acta 536:83–90CrossRefGoogle Scholar
  44. 44.
    Martín-Calero A, Pino V, Ayala JH, González V, Afonso AM (2009) Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta 79:590–597CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fernando De Andrés
    • 1
  • Mohammed Zougagh
    • 1
    • 2
  • Gregorio Castañeda
    • 1
  • Angel Ríos
    • 1
    • 3
  1. 1.Department of Analytical Chemistry and Food Technology, Faculty of ChemistryUniversity of Castilla-La ManchaCiudad RealSpain
  2. 2.Albacete Science and Technology ParkAlbaceteSpain
  3. 3.Regional Institute for Applied Chemistry ResearchIRICACiudad RealSpain

Personalised recommendations