Skip to main content
Log in

Methylene blue as an electrochemical indicator for DF508 cystic fibrosis mutation detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cystic fibrosis is one of the most common life-shortening, childhood-onset inherited diseases. Among the 1,000 known cystic fibrosis-related mutations, DF508 is the most common, with a frequency varying between 50% and 70% according to geographical areas and population typology. In this work, we report the use of methylene blue as an electrochemical reporting agent in the discrimination of synthetic PCR analogue of the DF508 cystic fibrosis mutation (Mut) from the wild type (Wt). At optimum experimental condition, a discrimination factor between mutant and wild type of approximately 1.5-fold was found. The proposed assay was quantitative and linear in the range of 10–100 nM, exhibiting a limit of detection of 2.64 nM. Electrochemical studies at variable ionic strength conditions allowed further elucidation of the mechanism of the methylene blue (MB)–DNA interaction. To the best of our knowledge, this is the first report of detection of hybridisation solely via guanine-specific MB–DNA interaction simultaneously in MB solution, independent of electrostatic interaction as demonstrated in the ionic strength study. The introduction of formamide in the hybridization buffer, to improve discrimination, was also investigated. Finally, mutant wild type discrimination was demonstrated, at 10 nM concentration, with the use of a multi-sensor setup.

Electrochemical response before and after sensor regeneration

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MB:

Methylene blue

MCH:

Mercaptohexanol

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

PCR:

Polymerase chain reaction

MAPH:

Multiplex amplification and probe hybridisation

Mut ampl:

DF508 Cystic fibrosis mutation amplicon

Wt ampl:

Cystic fibrosis wild-type amplicon

References

  1. Andersen DH (1938) Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathological study. Am J Dis Child 56:344–399

    Google Scholar 

  2. Kerem BS, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  CAS  Google Scholar 

  3. Dodge JA, Marison S, Lewis PA, Coles EC, Geddes D, Russell G (1997) Incidence, population and survival of cystic fibrosis in 1995. Arch Dis Child 77:493–496

    Article  CAS  Google Scholar 

  4. Boat T, Welsh M, Beaudet AL (1989) Cystic fibrosis, 6th edn. McGraw Hill, New York

    Google Scholar 

  5. Murphy D, Redmond G (2005) Optical detection and discrimination of cystic fibrosis-related genetic mutations using oligonucleotide–nanoparticle conjugates. Anal Bioanal Chem 381:1122–1129

    Article  CAS  Google Scholar 

  6. Schwarz MJ (1998) DNA diagnosis of cystic fibrosis. Ann Clin Biochem 35:584–610

    CAS  Google Scholar 

  7. Liu J, Liu J, Yang L, Chen X, Zhang M, Meng F, Luo T, Li M (2009) Nanomaterial-assisted signal enhancement of hybridization for DNA biosensors: a review. Sensors 9:7343–7364

    Article  CAS  Google Scholar 

  8. Lodes MJ, Suciu D, Wilmoth JL, Ross M, Munro S, Dix K, Bernards K, Stover AG, Quintana M, Iihoshi N, Lyon WJ, Dnaley DL, McShea A (2007) Plos ONE 2(9):924

    Article  CAS  Google Scholar 

  9. Lisdat F, Schäfer D (2008) Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  10. Long Y, Li C, Sutherland T, Kraatz H, Lee J (2004) Anal Chem 76:4059–4065

    Article  CAS  Google Scholar 

  11. DeLumley T, Campbell C, Heller A (1996) J Am Chem Soc 118:5504

    Article  Google Scholar 

  12. Alfonta L, Singh AK, Willner I (2001) Anal Chem 73:91

    Article  CAS  Google Scholar 

  13. Pividori MI, Merkoci A, Alegret S (2001) Biosens Bioelectron 16(9–12):1133–1142

    Article  CAS  Google Scholar 

  14. Arias P, Ferreyra NF, Rivas GA, Bollo S (2009) Glassy carbon electrodes modified with cnt dispersed in chitosan: analytical applications for sensing DNA–methylene blue interaction. J Electroanal Chem 634:123–126

    Article  CAS  Google Scholar 

  15. Ihara T, Nakayama M, Murata M, Nakano K, Maeda M (1997) Gene sensor using ferrocenyl oligonucleotides. Chem Commun, pp 1609–1610

  16. Kertez V, Whittemore NA, Inamati G, Manoharan M, Cook P, Baker D, Chambers JO (2000) Electroanalysis 12:889

    Article  Google Scholar 

  17. Patolsky F, Lichtenstein A, Willner I (2001) J Am Chem Soc 123(22):5194–5205

    Article  CAS  Google Scholar 

  18. Napier ME, Loomis CR, Sistare MF, Kim J, Eckhardt AE, Thorp HH (1997) Probing biomolecule recognition with electron transfer: electrochemical sensors for DNA hybridization. Bioconjug Chem 8:906–913

    Article  CAS  Google Scholar 

  19. Millan KM, Saraullo A, Mikkelsen SR (1994) Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem 66:2943–2948

    Article  CAS  Google Scholar 

  20. Li X-M, Ju H-Q, Du L-P, Zhang S-S (2007) A nucleic acid biosensor for the detection of a short sequence related to the hepatitis b virus using bis(benzimidazole)cadmium(II) dinitrate as an electrochemical indicator. J Inorg Biochem 101:1165–1171

    Article  CAS  Google Scholar 

  21. Petty JT, Bordelon JA, Robertson ME (2000) Thermodynamic characterization of the association of cyanine dyes with DNA. J Phys Chem B 104:7221–7227

    Article  CAS  Google Scholar 

  22. Zhao GC, Zhu JJ, Chen HY (1999) Spectrochim Acta, Part A: Mol Biomol Spectrosc 55(5):1109–1117

    Article  Google Scholar 

  23. Nafisi S, Saboury AA, Keramat N, Neault JF, Tajmir-Riahi HA (2007) J Mol Struct 827(1–3):35–43

    Article  CAS  Google Scholar 

  24. Erdem A, Kerman K, Meric B, Akarca US, Ozsoz M (2000) Anal Chim Acta 422(2):139–149

    Article  CAS  Google Scholar 

  25. Yang WR, Ozsoz M, Hibbert DB, Gooding JJ (2002) Electroanalysis 14(18):1299–1302

    Article  CAS  Google Scholar 

  26. Boon EM, Ceres DM, Drummond TG, Hill MG, Barton JK (2000) Mutation detection by electrocatalysis at DNA-modified electrodes. Nat Biotechnol 18:1096–1100

    Article  CAS  Google Scholar 

  27. Kelley SO, Barton JK, Jackson NM, Hill MG (1997) Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug Chem 8:31–37

    Article  CAS  Google Scholar 

  28. Sismani C, Kousoulidou L, Patsalis PC (2000) Multiplex amplifiable probe hybridization (maph). In: Walker JM, Rapley R (eds) Molecular biomethods handbook. Humana, Totowa, pp 179–193

    Google Scholar 

  29. Zhu N, Zhang A, Wang Q, He P, Fang Y (2004) Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Anal Chim Acta 510:163–168

    Article  CAS  Google Scholar 

  30. Jin Y, Yao X, Liu Q, Li J (2007) Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosens Bioelectron 22:1126–1130

    Article  CAS  Google Scholar 

  31. Lin X-H, Wu P, Chen W, Zhang Y-F, Xia X-H (2007) Electrochemical DNA biosensor for the detection of short DNA species of chronic myelogenous leukemia by using methylene blue. Talanta 72:468–471

    Article  CAS  Google Scholar 

  32. Óscar AL, Susana C, María P, José MP (2008) Designs of enterobacteriaceae lac z gene DNA gold screen printed biosensors. Electroanalysis 20:1397–1405

    Article  CAS  Google Scholar 

  33. Zhu N, Zhang A, Wanf Q, He P, Fang Y (2004) Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrode. Anal Chim Acta 510:163–168

    Article  CAS  Google Scholar 

  34. Pänke O, Kirbs A, Lisdat F (2007) Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay. Biosens Bioelectron 22:2656–2662

    Article  CAS  Google Scholar 

  35. Lin XH, Wu P, Chen W, Zhang YF, Xia XH (2007) Electrochemical DNA biosensor for the detection of short DNA species of chronic myelogonous leukemia by using methylene blue. Talanta 72:468–471

    Article  CAS  Google Scholar 

  36. Jin Y, Yao X, Liu Q, Li J (2007) Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosens Bioelectron 22:1126–1130

    Article  CAS  Google Scholar 

  37. Loiaza OA, Campuzano S, Pedrero M, Pingarron JM (2008) Designs of enterobacteriacae lac Z gene DNA gold screen printed biosensors. Electroanalysis 20:1397–1405

    Article  CAS  Google Scholar 

  38. Henry OYF, Acero Sanchez JL, Latta D, O’Sullivan CK (2009) Electrochemical quantification of DNA amplicons via the detection of non-hybridised guanine bases on low-density electrode arrays. Biosens Bioelectron 24:2064–2070

    Article  CAS  Google Scholar 

  39. Kelley SO, Jackson NM, Hill MG, Barton JK (1999) Angew Chem 38:941

    Article  CAS  Google Scholar 

  40. Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak Z (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  Google Scholar 

  41. Herne TM, Tarlov MJ (1997) J Am Chem Soc 119:8916–8920

    Article  CAS  Google Scholar 

  42. Fujimoto BS, Clendenning JB, Delrow JJ, Heath PJ, Schurr M (2002) Fluorescence and photobleaching studies of methylene blue binding to DNA. J Phys Chem 98:6633–6643

    Article  Google Scholar 

  43. Nafisi S, Saboury AA, Keramat N, Neault J-F, Tajmir-Riahi H-A (2007) Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J Mol Struct 827:35–43

    Article  CAS  Google Scholar 

  44. Wang Y, Zhou A (2007) Spectroscopic studies on the binding of methylene blue with DNA by means of cyclodextrin supramolecular systems. J Photochem Photobiol, A Chem 190:121–127

    Article  CAS  Google Scholar 

  45. Rohs R, Sklenar H (2004) Methylene blue binding to DNA with alternating at base sequence: minor groove binding is favored over intercalation. J Biomol Struct Dyn 21(5):699–711

    CAS  Google Scholar 

  46. Kara P, Kerman K, Ozkan D, Meric B, Erdem A, Ozkan Z, Ozsoz M (2002) Electrochemical genosensor for the detection of interaction between methylene blue and DNA. Electrochem Commun 4:705–709

    Article  CAS  Google Scholar 

  47. Zhao F, Zeng B, Pang D (2003) Voltammetric study of methylene blue at thiol SAMs-modified gold electrodes. Electroanalysis 15:1060–1066

    Article  CAS  Google Scholar 

  48. Dharuman V, Hahn JH (2007) Sens Actuators B, Chem 127:536–544

    Article  CAS  Google Scholar 

  49. Dharuman V, Hahn JH (2008) Biosens Bioelectron 23(8):1250–1258

    Article  CAS  Google Scholar 

  50. Yan F, Erdem A, Meric B, Kerman K, Ozsoz M, Sadik OA (2001) Electochem Commun 3(5):224–228

    Article  CAS  Google Scholar 

  51. Levine L, Gordon JA, Jencks W (1962) Biochemistry 2:168–175

    Article  Google Scholar 

  52. Herskovitz TT, Singer SJ, Geiduschek EP (1961) Arch Biochem Biophys 94:99–114

    Article  Google Scholar 

  53. Geiduschek EP, Herskovitz TT (1961) Arch Biochem Biophys 95:114–129

    Article  CAS  Google Scholar 

  54. Hamaguchi K, Geiduschek P (1962) J Am Chem Soc 84:1329–1338

    Article  CAS  Google Scholar 

  55. Abad-Valle P, Fernández-Abedul MT, Costa-García A (2007) DNA single-base mismatch study with an electrochemical enzymatic genosensor. Biosens Bioelectron 22:1642–1650

    Article  CAS  Google Scholar 

  56. Hernandez-Santos D, Gonzalez-Garcia MB, Costa-Garcia A (2005) Genosensor based on a platinum(II) complex as electrocatalytic label. Anal Chem 77:2868–2874

    Article  CAS  Google Scholar 

  57. Pyykkö P (2005) Theoretical chemistry of gold. II. Inorg Chim Acta 358:4113–4130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out with financial support from the Commission of the European Communities, specific RTD programme ‘Isolation of foetal cells from maternal blood, SAFER, NEST-ADVENTURE 04977’. Dr. Valerio Beni kindly acknowledges the European Community’s, Seventh framework programme (FP7/2007-2013) under grant agreement nº (PIGF-GA-2008-220928) for the financial support. Hany Nasef wishes to thank Universitat Rovira I Virgili for a BRDI scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciara K. O’Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasef, H., Beni, V. & O’Sullivan, C.K. Methylene blue as an electrochemical indicator for DF508 cystic fibrosis mutation detection. Anal Bioanal Chem 396, 1423–1432 (2010). https://doi.org/10.1007/s00216-009-3369-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3369-5

Keywords

Navigation