Skip to main content

Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens

Abstract

A new method is presented for elemental and molecular analysis of halogen-containing samples by glow discharge time-of-flight mass spectrometry, consisting of detection of negative ions from a pulsed RF glow discharge in argon. Analyte signals are mainly extracted from the afterglow regime of the discharge, where the cross section for electron attachment increases. The formation of negative ions from sputtering of metals and metal oxides is compared with that for positive ions. It is shown that the negative ion signals of F and TaO2F are enhanced relative to positive ion signals and can be used to study the distribution of a tantalum fluoride layer within the anodized tantala layer. Further, comparison is made with data obtained using glow-discharge optical emission spectroscopy, where elemental fluorine can only be detected using a neon plasma. The ionization mechanisms responsible for the formation of negative ions in glow discharge time-of-flight mass spectrometry are briefly discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Nickel H, Broekaert JAC (1999) Fresenius' J Anal Chem 363:145–155

    Article  CAS  Google Scholar 

  2. Pisonereo J, Fernández B, Günther D (2009) J Anal At Spectrom 24:1145–1160

    Article  Google Scholar 

  3. Fulford JE, Quan ESK (1988) Appl Spectrosc 42:425–428

    Article  CAS  Google Scholar 

  4. Oechsner H (1995) Int J Mass Spectrom Ion Process 143:271–282

    Article  CAS  Google Scholar 

  5. Hoffmann V, Kasik M, Robinson PK, Venzago C (2005) Anal Bioanal Chem 381:173–188

    Article  CAS  Google Scholar 

  6. Hohl M, Kanzari A, Michler J, Nelis T et al (2006) Surf Interface Anal 38:292–295

    Article  CAS  Google Scholar 

  7. Weiss Z, Marshall K (1997) Thin Solid Films 308–309:382–388

    Article  Google Scholar 

  8. Pisonero J (2006) Anal Bioanal Chem 384:47–49

    Article  CAS  Google Scholar 

  9. Muniz AC, Pisonero J, Lobo L, Gonzalez C et al (2008) J Anal At Spectrom 23:1239–1246

    Article  CAS  Google Scholar 

  10. Tuccitto N, Lobo L, Tempez A, Delfanti I et al (2009) Rapid Commun Mass Spectrom 23:549–556

    Article  Google Scholar 

  11. Bogaerts A, Gijbels R (1998) Spectrochim Acta Part B 53:1–42

    Article  Google Scholar 

  12. Pan C, King FL (1993) J Am Soc Mass Spectrom 4:727–732

    Article  CAS  Google Scholar 

  13. King FL, Pan C (1993) Anal Chem 65:735–739

    Article  CAS  Google Scholar 

  14. Vickers GH, Wilson DA, Hieftje GM (2002) Anal Chem 60:1808–1812

    Article  Google Scholar 

  15. Bentz BL, Harrison WW (1981) Int J Mass Spectrom Ion Phys 37:167–176

    Article  CAS  Google Scholar 

  16. Canulescu S, Whitby J, Fuhrer K, Hohl M et al (2009) J Anal At Spectrom 24:178–180

    Article  CAS  Google Scholar 

  17. Tempez A, Canulescu S, Molchan IS, Döbeli M et al (2009) Surf Int Anal 41(12-13):966–973

  18. Shimizu K, Kobayashi K, Thompson GE, Skeldon P et al (1996) Philos Mag, B 73:461–485

    Article  CAS  Google Scholar 

  19. Pisonero J, Feldmann I, Bordel N, Sanz-Medel A et al (2005) Anal Bioanal Chem 382:1965–1974

    Article  CAS  Google Scholar 

  20. Molchan IS, Thompson GE, Skeldon P, Trigoulet N et al (2009) J Anal At Spectrom 24:734–741

    Article  CAS  Google Scholar 

  21. Stoffels E, Stoffels WW, Vender D, Haverlag M et al (1995) Contrib Plasma Phys 35:331–357

    Article  CAS  Google Scholar 

  22. Overzet LJ, Lin Y, Luo L (1992) J Appl Phys 72:5579–5592

    Article  CAS  Google Scholar 

  23. Wagatsuma K, Hirokawa K, Yamashita N (1996) Anal Chim Acta 324:147–154

    Article  CAS  Google Scholar 

  24. Habazaki H, Fushimi K, Shimizu K, Skeldon P et al (2007) Electrochem Commun 9:1222–1227

    Article  CAS  Google Scholar 

  25. Martín A, Menéndez A, Pereiro R, Bordel N et al (2007) Anal Bioanal Chem 388:1573–1582

    Article  Google Scholar 

  26. Hodoroaba V-D, Hoffmann V, Steers EBM, Wetzig K (2000) J Anal At Spectrom 15:1075–1080

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from the European Union in the form of a Framework 6 STREP grant for the “New Elemental and Molecular Depth Profiling Analysis of Advanced Materials by Modulated Radio Frequency Glow Discharge Time of Flight Mass Spectrometry” (EMDPA) project is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stela Canulescu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Canulescu, S., Molchan, I.S., Tauziede, C. et al. Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens. Anal Bioanal Chem 396, 2871–2879 (2010). https://doi.org/10.1007/s00216-009-3366-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3366-8

Keywords