Skip to main content
Log in

DNA–WT1 protein interaction studied by surface-enhanced Raman spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Interactions of proteins with DNA play an important role in regulating the biological functions of DNA. Here we propose and demonstrate the detection of protein–DNA binding using surface-enhanced Raman scattering (SERS). In this method, double-stranded DNA molecules with potential protein-binding sites are labeled with dye molecules and immobilized on metal nanoparticles. The binding of proteins protects the DNA from complete digestion by exonuclease and can be detected by measuring the SERS signals before and after the exonuclease digestion. As a proof of concept, this SERS-based protein–DNA interaction assay is validated by studying the binding of a zinc finger transcription factor WT1 with DNA sequences derived from the promoter of the human vascular endothelial growth factor.

A representative dark-field optical microscopic image of Ag nanoparticles attached with dye labeled DNA molecules and two Raman spectra from AAg nanoparticles attached with FAM (left) and TAMRA (right) labeled DNA molecules respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Calkhoven CF, Ab G (1996) Biochem J 317:329–342

    CAS  Google Scholar 

  2. Latchman DS (1997) Intl J Biochem Cell Biol 29:1305–1312

    Article  CAS  Google Scholar 

  3. Scharnhorst V, van der Eb AJ, Jochemsen AG (2001) Gene 273:141–161

    Article  CAS  Google Scholar 

  4. Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, Housman D (1991) Genes Dev 5:1345–1356

    Article  CAS  Google Scholar 

  5. Roberts SGE (2005) Curr Opin Genet Dev 15:542–547

    Article  CAS  Google Scholar 

  6. Wagner K-D, Wagner N, Schedl A (2003) J Cell Sci 116:1653–1658

    Article  CAS  Google Scholar 

  7. Davies R, Moore A, Schedl A, Bratt E, Miyahawa K, Ladomery M, Miles C, Menke A, van Heyningen V, Hastie N (1999) Cancer Res 59:1747s–1751

    CAS  Google Scholar 

  8. Laity JH, Chung J, Dyson HJ, Wright PE (2000) Biochem 39:5341–5348

    Article  CAS  Google Scholar 

  9. Hewitt SM, Hamada S, McDonnell TJ, Rauscher FJ, Saunders GF (1995) Cancer Res 55:5386–5389

    CAS  Google Scholar 

  10. Melissa Little CW (1997) Hum Mutat 9:209–225

    Article  Google Scholar 

  11. Jamieson AC, Miller JC, Pabo CO (2003) Nat Rev Drug Discov 2:361–368

    Article  CAS  Google Scholar 

  12. Turkson J, Jove R (2000) Oncogene 19:6613–6626

    Article  CAS  Google Scholar 

  13. Guille MJ, Kneale GG (1997) Mol Biotech 8:35–52

    Article  CAS  Google Scholar 

  14. Wang J, Li T, Guo X, Lu Z (2005) Nucl Acids Res 33:e23-

    Google Scholar 

  15. Xu X, Zhao Z, Qin L, Wei W, Levine JE, Mirkin CA (2008) Anal Chem 80:5616–5621

    Article  CAS  Google Scholar 

  16. Liu GL, Yin YD, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FQF (2006) Nat Nanotech 1:47–52

    Article  CAS  Google Scholar 

  17. Moskovits M (1985) Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  18. Nie SM, Emery SR (1997) Science 275:1102–1106

    Article  CAS  Google Scholar 

  19. Cao YWC, Jin RC, Mirkin CA (2002) Science 297:1536–1540

    Article  CAS  Google Scholar 

  20. Vo-Dinh T, Allain LR, Stokes DL (2002) J Raman Spectrosc 33:511–516

    Article  CAS  Google Scholar 

  21. Woo MA, Lee SM, Kim G, Baek J, Noh MS, Kim JE, Park SJ, Minai TA, Park SC, Seo YT, Kim YK, Lee YS, Jeong DH, Cho MH (2009) Anal Chem 81:1008–1015

    Article  CAS  Google Scholar 

  22. Huh YS, Lowe AJ, Strickland AD, Batt CA, Erickson D (2009) J Am Chem Soc 131:2208–2213

    Article  CAS  Google Scholar 

  23. Graham D, Faulds K (2008) Chem Soc Rev 37:1042–1051

    Article  CAS  Google Scholar 

  24. Bonham AJ, Braun G, Pavel I, Moskovits M, Reich NO (2007) J Am Chem Soc 129:14572

    Article  CAS  Google Scholar 

  25. Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM (2008) Nat Biotech 26:83–90

    Article  CAS  Google Scholar 

  26. Hanson J, Gorman J, Reese J, Fraizer G (2007) Front Biosci 12:2279–2290

    Article  CAS  Google Scholar 

  27. Eisermann K, Tandon S, Bazarov A, Brett A, Fraizer G, Piontkivska H (2008) BMC Genom 9:337

    Article  Google Scholar 

  28. Chen JW, Jiang JH, Gao X, Liu GK, Shen GL, Yu RQ (2008) Chem Eur J 14:8374–8382

    Article  CAS  Google Scholar 

  29. Docherty FT, Monaghan PB, Keir R, Graham D, Smith WE, Cooper JM (2004) Chem Commun 118–119

  30. Faulds K, Smith WE, Graham D (2004) Anal Chem 76:412–417

    Article  CAS  Google Scholar 

  31. Wabuyele MB, Vo-Dinh T (2005) Anal Chem 77:7810–7815

    Article  CAS  Google Scholar 

  32. McMillan PF, Remmele RL (1986) Am Mineralogist 71:772–778

    CAS  Google Scholar 

  33. Gersten J, Nitzan A (1981) J Chem Phys 75:1139–1152

    Article  CAS  Google Scholar 

  34. Lakowicz JR (2001) Anal Biochem 298:1–24

    Article  CAS  Google Scholar 

  35. Schneider G, Decher G, Nerambourg N, Praho R, Werts MHV, Blanchard-Desce M (2006) Nano Lett 6:530–536

    Article  CAS  Google Scholar 

  36. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI (2002) Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  37. Xu HX, Bjerneld EJ, Kall M, Borjesson L (1999) Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  38. Hamilton TB, Barilla KC, Romaniuk PJ (1995) Nucl Acids Res 23:277–284

    Article  CAS  Google Scholar 

  39. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) J Phys Cond Matt 14:R597–R624

    Article  CAS  Google Scholar 

  40. Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE (2006) J Chem Physis 124:61101

    Article  Google Scholar 

  41. Qin LD, Zou SL, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Proc Natl Acad Sci USA 103:13300–13303

    Article  CAS  Google Scholar 

  42. Joshi BP, Wei QH (2008) Opt Express 16:8

    Article  Google Scholar 

  43. Su KH, Wei QH, Zhang X (2006) Appl Phys Lett 88:063118

    Article  Google Scholar 

  44. Su KH, Durant S, Steele JM, Xiong Y, Sun C, Zhang X (2006) J Phys Chem B 110:3964–3968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Ohio Board of Regents through a research challenge grant. H. A. is supported by an NSF REU program through a grant CHE0649017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gail Fraizer or Qi-Huo Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, B., Chakrabarty, A., Bruot, C. et al. DNA–WT1 protein interaction studied by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 396, 1415–1421 (2010). https://doi.org/10.1007/s00216-009-3364-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3364-x

Keywords

Navigation