Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 215–221 | Cite as

Raman spectroscopic analysis of minerals and organic molecules of relevance to astrobiology

  • A. I. Alajtal
  • H. G. M. Edwards
  • I. J. Scowen
Original Paper

Abstract

Characteristic geological features and hydrated minerals recently found on the surface of Mars by the NASA planetary rovers Spirit and Opportunity suggest that a possible biosphere could have once existed there. Analytical instrumentation protocols for the unequivocal detection of biomarkers in suitable geological matrices are critical for future unmanned explorations, including the forthcoming ESA-ExoMars mission scheduled for 2018. Raman spectroscopy is currently a part of the Pasteur instrumentation suite of the ExoMars mission scheduled for 2018 for the remote detection of extant or extinct life signatures in the Martian surface and subsurface. Terrestrial analogues of Martian sites have been identified, and the biogeological modifications incurred as a result of extremophilic survival activity have been studied. Polyaromatic hydrocarbons (PAHs) are recognised as a class of degradation product that occur from biological processes terrestrially. In this work, various concentrations of polyaromatic hydrocarbons in matrices of gypsum, calcite and quartz have been investigated by Raman microspectrometry to determine the lowest detectable organic levels. The studies are conceived in simulation of their potential PAHs identification in geobiological conditions in Martian scenarios. Two laser source wavelengths, namely, 785 and 633 nm, were adopted to excite Raman spectra from the PAHs, which represent degraded carbons and therefore potentially provide a key bimolecular marker of ancient life.

Keywords

Raman spectroscopy Mars analogue Minerals PAHs 

References

  1. 1.
    Ellery A, Wynn-Williams DD (2003) Astrobiology 3(3):565CrossRefGoogle Scholar
  2. 2.
    Hiscox JA (2001) Earth Moon Planets 87(3):191CrossRefGoogle Scholar
  3. 3.
    Gorbushina AA, Krumbein WE, Volkmann M (2002) Astrobiology 2(2):203CrossRefGoogle Scholar
  4. 4.
    Bishop JL, Murad E, Lane MD, Mancinelli RL (2004) Icarus 169(2):311CrossRefGoogle Scholar
  5. 5.
    Wiens RC, Arvidson RE, Cremers DA, Ferris MJ, Blacic JD, Seelos FP, Deal KS (2002) J Geophys Res Planets 107(E11):8004, Art noCrossRefGoogle Scholar
  6. 6.
    Edwards HGM, Newton EM, Wynn-Williams DD, Lewis-Smith RI (2003) Spectrochim Acta Part A 59(10):2301CrossRefGoogle Scholar
  7. 7.
    Edwards HGM, Newton EM, Wynn-Williams DD (2003) J Mol Struct 651:27CrossRefGoogle Scholar
  8. 8.
    Edwards HGM, Newton EM, Wynn-Williams DD, Coombes SR (2003) J Mol Struct 648(1–2):49CrossRefGoogle Scholar
  9. 9.
    Edwards HGM, Farwell DW, Grady MM, Wynn-Williams DD (1999) IP Planet Space Sci 47(3–4):353CrossRefGoogle Scholar
  10. 10.
    Mikouchi T, Miyamoto M (2000) Meteorit Planet Sci 35(1):155CrossRefGoogle Scholar
  11. 11.
    Wang A, Han JY, Guo LH, Yu JY, Zeng P (1994) Appl Spectrosc 48(8):959CrossRefGoogle Scholar
  12. 12.
    Wang A, Jolliff BL, Haskin LA (1999) J Geophys Res Planets 104(E4):8509CrossRefGoogle Scholar
  13. 13.
    Wang A, Kuebler KE, Jolliff BL, Haskin LA (2004) Am Mineral 89(5–6):665CrossRefGoogle Scholar
  14. 14.
    Edwards HGM, Newton EM, Dickensheets DL, Wynn-Williams DD (2003) Spectrochim Acta Part A 59(10):2277CrossRefGoogle Scholar
  15. 15.
    Edwards HGM (2004) Orig Life Evol Biosph 34(1–2):3CrossRefGoogle Scholar
  16. 16.
    Wynn-Williams DD, Edwards HGM (2000) Icarus 144(2):486CrossRefGoogle Scholar
  17. 17.
    Edwards HGM, Wynn-Williams DD, Jorge Villar SE (2004) J Raman Spectrosc 35:470CrossRefGoogle Scholar
  18. 18.
    Dickensheets DL, Wynn-Williams DD, Edwards HGM, Schoen C, Crowder C, Newton EM (2000) J Raman Spectrosc 31(7):633CrossRefGoogle Scholar
  19. 19.
    Sharma SK, Lucey PG, Ghosh M, Hubble HW, Horton KA (2003) Spectrochim Acta A 59(10):2391CrossRefGoogle Scholar
  20. 20.
    Wang A, Haskin LA, Lane AL, Wdowiak TJ, Squyres SW, Wilson RJ, Hoyland LE, Manatt KS, Raouf N, Smith CD (2003) J Geophys Res Planets 108(E1):5005, Art. NoCrossRefGoogle Scholar
  21. 21.
    Wang A, Haskin LA (2000) Microbeam Analysis, Proc Inst Phys Conf Ser 165:103Google Scholar
  22. 22.
    Wang A, Haskin LA, Cortez E (1998) Appl Spectrosc 52(4):477CrossRefGoogle Scholar
  23. 23.
    Edwards HGM, Newton EM, Wynn-Williams DD (2003) Int J Astrobiology 1:333–348CrossRefGoogle Scholar
  24. 24.
    Edwards HGM, Scowen IJ, Hargreaves MD, Munshi T (2008) GeoRaman ‘08 Abstracts, 8th International Conf. Raman Spectroscopy Applied to the Earth Sciences, Ghent, Belgium. In: Vandenabeele P, Moens L (eds) Academia Press, Ghent, Belgium, pp 43, 118Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. I. Alajtal
    • 1
  • H. G. M. Edwards
    • 1
    • 2
  • I. J. Scowen
    • 1
    • 2
  1. 1.Centre for Astrobiology & Extremophiles Research, School of Life SciencesUniversity of BradfordBradfordUK
  2. 2.University Analytical CentreUniversity of BradfordBradfordUK

Personalised recommendations