Skip to main content
Log in

Application of surface chemical analysis tools for characterization of nanoparticles

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The important role that surface chemical analysis methods can and should play in the characterization of nanoparticles is described. The types of information that can be obtained from analysis of nanoparticles using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), low-energy ion scattering (LEIS), and scanning-probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), are briefly summarized. Examples describing the characterization of engineered nanoparticles are provided. Specific analysis considerations and issues associated with using surface-analysis methods for the characterization of nanoparticles are discussed and summarized, with the impact that shape instability, environmentally induced changes, deliberate and accidental coating, etc., have on nanoparticle properties.

Atomic force microscopy image of Cu2O nanodots formed on a SrTiO3 substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baer DR, Amonette JE, Engelhard MH, Gaspar DJ, Karakoti AS, Kuchibhatla S, Nachimuthu P, Nurmi JT, Qiang Y, Sarathy V, Seal S, Sharma A, Tratnyek PG, Wang CM (2008) Characterization challenges for nanomaterials. Surf Interface Anal 40:529–537

    Article  CAS  Google Scholar 

  2. Grainger DW, Castner DG (2008) Nanobiomaterials and nanoanalysis: opportunities for improving the science to benefit biomedical technologies. Adv Mater 20:867–877

    Article  CAS  Google Scholar 

  3. Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J Phys Chem A 112:18303–18313

    CAS  Google Scholar 

  4. Stuart C (2006) Particle Size Matters. Small Times 6

  5. Karakoti AS, Hench LL, Seal S (2006) The potential toxicity of nanomaterials - The role of surfaces. JOM 58:77–82

    Article  CAS  Google Scholar 

  6. Available from the World Wide Web: (2008). http://www.oecd.org/department/0,3355,en_2649_37015404_1_1_1_1_1,00.html

  7. Wu H, Engelhard MH, Wang J, Fisher DR, Lin Y (2008) Synthesis of lutetium phosphate-apoferritin core-shell nanoparticles for potential applications in radioimmunoimaging and radioimmunotherapy of cancers. J Mater Chem 18:1779–1783

    Article  CAS  Google Scholar 

  8. Baer D, Tratnyek P, Y Qiang, JE Amonette, JC Linehan, V Sarathy, JT Nurmi, CM Wang and Antony. J. (2007). Synthesis, Characterization and Properties of Zero Valent Iron Nanoparticles. In: G. Fryxell & G. Cao Environmental Applications of Nanomaterials: Synthesis, Sorbents, and Sensors Imperial College Press, London

  9. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang CM, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Article  CAS  Google Scholar 

  10. Johnson RL, Johnson GO, Nurmi JT, Tratnyek PG (2009) Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol 43:5455–5460

    Article  CAS  Google Scholar 

  11. Chen RJ, Zhang YG, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Article  CAS  Google Scholar 

  12. Dyke CA, Stewart MP, Maya F and Tour JM (2004) Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett 155–160

  13. Baer DR, Engelhard MH (2009) XPS analysis of nanostructured materials and biological surfaces. Journal of Electron Spectroscopy and Related Phenomena doi:10.1016/j.elspec.2009.09.003

  14. Powell CJ (2003) Growth and trends in Auger-electron spectroscopy and x-ray photoelectron spectroscopy for surface analysis. J Vac Sci Technol A 21:S42–S53

    Article  CAS  Google Scholar 

  15. Reniers F, Tewell C (2005) New improvements in energy and spatial (x, y, z) resolution in AES and XPS applications. J Electron Spectrosc Relat Phenom 142:1–25

    Article  CAS  Google Scholar 

  16. Brundle CR, Evans CA and Wilson S (1992) Encyclopedia of Materials Characterization: Surfaces, Interfaces, Thin Films Greenwich. CT: Butterworth-Heinemann

  17. Available from the World Wide Web: http://www.cea.com/

  18. Scalf J and West P (2006) Part I: Introduction to Nanoparticle Characterization with AFM. Application Note - Pacific Nanotechnologies www.nanoparticles.org/pdf/scalf-west.pdf (last accessed November 23, 2009)

  19. Gilmore IS, Seah MP, Johnstone JE (2003) Quantification issues in ToF-SSIMS and AFM co-analysis in two-phase systems, exampled by a polymer blend. Surf Interface Anal 35:888

    Article  CAS  Google Scholar 

  20. Available from the World Wide Web: http://www.npl.co.uk/nanoanalysis

  21. Nurmi JT, Sarathy V, Tratnyek PTB, D. R. , Amonette JE and Karkamkar A (2009) Recovery of Iron/Iron Oxide Nanoparticles from Solution: Comparison of Methods and their Effects. Journal of Nanoparticles In Press

  22. Jablonski A, Powell CJ (2003) Information depth and the mean escape depth in Auger electron spectroscopy and X-ray photoelectron spectroscopy. J Vac Sci Technol A 21:274–283

    Article  CAS  Google Scholar 

  23. Finster J, Lorenz P, Meisel A (1979) Quantitative ESCA surface analysis applied to catalysts: investigation of concentration gradients. Surf Interface Anal 1:179–184

    Article  CAS  Google Scholar 

  24. Srivastava S (1988) ESCA studies of supported catalysts. Appl Spectrosc Rev 24:81–97

    Article  CAS  Google Scholar 

  25. Venezia AM (2003) X-ray photoelectron spectroscopy (XPS) for catalysts characterization. Catal Today 77:359–370

    Article  CAS  Google Scholar 

  26. Tougaard S (2005) XPS for quantitative analysis of surface nano-structures. Microsc Microanal 11:676–677

    Article  Google Scholar 

  27. Frydman A, Schmal M, Castner DG, Campbell CT (1995) A method for accurate quantitative xps analysis of multimetallic and multiphase catalysts on support particles. J Catal 157:133–144

    Article  CAS  Google Scholar 

  28. Powell CJ (2004) Effect of backscattered electrons on the analysis area in scanning Auger microscopy. Appl Surf Sci 230:327–333

    Article  CAS  Google Scholar 

  29. Shard AG, Wang J, Spencer SJ (2009) XPS topofactors: determining overlayer thickness on particles and fibres. Surf Interface Anal 41:541–548

    Article  CAS  Google Scholar 

  30. Yang DQ and Sacher E (2008) X-ray photoelectron spectroscopy characterization of Nanoparticles (NPs): I. Dimensional effects. http://www.scribd.com/doc/2194883/Nano-XPS-nanost-1 (last accessed November 23, 2009)

  31. Castle JE (2007) Module to guide the expert use of x-ray photoelectron spectroscopy by corrosion scientists. J Phys Chem A 25:1–27

    CAS  Google Scholar 

  32. Castle JE (2009) Update on expert systems. Journal of Electron Spectroscopy and Related Phenomena doi:10.1016/j.elspec.2009.07.005

  33. Sarathy V, Tratnyek PG, Nurmi JT, Baer DR, Amonette JE, Chun CL, Penn RL, Reardon EJ (2008) Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity. J Phys Chem A 112:2286–2293

    CAS  Google Scholar 

  34. Smith GC (2005) Evaluation of a simple correction for the hydrocarbon contamination layer in quantitative surface analysis by XPS. J Electron Spectrosc Relat Phenom 148:21–28

    Article  CAS  Google Scholar 

  35. Ashida T, Miura K, Nomoto T, Yagi S, Sumida H, Kutluk G, Soda K, Namatame H, Taniguchi M (2007) Synthesis and characterization of Rh(PVP) nanoparticles studied by XPS and NEXAFS. Surf Sci 601:3898–3901

    Article  CAS  Google Scholar 

  36. Zhu J, Somorjai GA (2001) Formation of platinum silicide on a platinum nanoparticle array model catalyst deposited on silica during chemical reaction. Nano Lett 1:8–13

    Article  CAS  Google Scholar 

  37. Yang DQ, Gillet JN, Meunier M, Sacher E (2005) Room temperature oxidation kinetics of Si nanoparticles in air, determined by x-ray photoelectron spectroscopy. J Appl Physi 97:6

    Google Scholar 

  38. Kerkhof FPJM, Moulijn JA (1979) Quantative-analysis of XPS intensities for supported catalysts. J Phys Chem 83:1612–1619

    Article  CAS  Google Scholar 

  39. Kuipers HPCE, van Leuven HCE, Visser aWM (1986) The characaterization of heterogeneous catalysis by XPS based on geometrical-probability. 1. Monometallic catalysts. Surf Interface Anal 8:235–242

    Article  CAS  Google Scholar 

  40. Yang DQ, Meunier M, Sacher E (2001) The estimation of the average dimensions of deposited clusters from XPS emission intensity ratios. Appl Surf Sci 173:134–139

    Article  CAS  Google Scholar 

  41. Hajati S, Zaporojtchenko V, Faupel F, Tougaard S (2007) Characterization of Au nano-cluster formation on and diffusion in polystyrene using XPS peak shape analysis. Surf Sci 601:3261–3267

    Article  CAS  Google Scholar 

  42. Gonzalez-Elipe AR, Munuera G, Espinos JP (1990) XPS intensities and binding-energy shifts as metal dispersion parameters in NI/SIO2 catalysts. Surf Interface Anal 16:375–379

    Article  CAS  Google Scholar 

  43. Nosova LV, Stenin MV, Nogin YN, Ryndin YA (1992) EXAFS and XPS studies of the influence of metal particle size, nature of support and H2 and CO adsorption on the structure and electronic properties of palladium. Appl Surf Sci 55:43–48

    Article  CAS  Google Scholar 

  44. Liang Y, Lea AS, McCready DE, Meethunkij P (2001) Synthesis and Characterization of Self-Assembled Cu2O Nano-Dots. In: Baer DR, Clayton CR, Davis GD, Halada GP. State-of-the-Art Application of Surface and Interface Analysis Methods to Environmental Material Interactions: In Honor of James E. Castle's 65th The Electrochemical Society, Pennington, NJ., The Electrochemical Society, Washington DC

  45. Lyubinetsky I, Lea AS, Thevuthasan S, Baer DR (2005) Formation of epitaxial oxide nanodots on oxide substrate: Cu2O on SrTiO3(100). Surf Sci 589:120–128

    Article  CAS  Google Scholar 

  46. Koh AL, Shachaf CM, Elchuri S, Nolan GP, Sinclair R (2008) Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells. Ultramicroscopy 109:111–121

    Article  CAS  Google Scholar 

  47. Borade R, Sayari A, Adnot A, Kaliaguine S (2002) Characterization of acidity in ZSM-5 zeolites: an x-ray photoelectron and IR spectroscopy study. J Phys Chem 94:5989–5994

    Article  Google Scholar 

  48. Cohen H, Sarkar SK, Hodes G (2006) Chemically resolved photovoltage measurements in CdSe nanoparticle films. J Phys Chem, B 110:25508–25513

    Article  CAS  Google Scholar 

  49. Tunc I, Demirok UK, Suzer S, Correa-Duatre MA, Liz-Marzan LM (2005) Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS. J Phys Chem, B 109:24182–24184

    Article  CAS  Google Scholar 

  50. Ratner BD, Castner DG, Brison J, Barnes C and Daneshcvar R Static SIMS: A Powerful Tool to Investigate Nanoparticles and Biology http://www.semineedle.com/system/files/BuddyRatner_5-14-09.pdf?snc=5963. 2009, TeleSeminar. http://www.semineedle.com/system/files/BuddyRatner_5-14-09.pdf?snc=5963 (last accessed PDF on webpage)

  51. Brongersma HH, Draxler M, de Ridder M, Bauer P (2007) Surface composition analysis by low-energy ion scattering. Surf Sci Rep 62:63–109

    Article  CAS  Google Scholar 

  52. Kim YP, Oh E, Oh YH, Moon DW, Lee TG, Kim HS (2007) Protein kinase assay on peptide-conjugated gold nanoparticles by using secondary-ion mass spectrometric imaging. Angew Chem Int Edit 46:6816–6819

    Article  CAS  Google Scholar 

  53. Shi D, Zhou Y, Wang SX, Van Ooij WJ, Wang LM, Zhao JG (2001) Multi-layer coating of ultrathin polymer films on nanoparticles of alumina by a plasma treatment. Material Research Society Symposium 635:C4.28.1–C4.28.6

    Google Scholar 

  54. Gaspar DJ, Laskin A, Wang W, Hunt SW, Finlayson-Pitts BJ (2004) TOF-SIMS analysis of sea salt particles: imaging and depth profiling in the discovery of an unrecognized mechanism for pH buffering. Appl Surf Sci 231:520–523

    Article  Google Scholar 

  55. Ghule AV, Ghule K, Chen CY, Chen WY, Tzing SH, Chang H, Ling YC (2004) In situ thermo-TOF-SIMS study of thermal decomposition of zinc acetate dihydrate. J Mass Spectrom 39:1202–1208

    Article  CAS  Google Scholar 

  56. Reinholdt A, Detemple R, Stepanov AL, Weirich TE, Kreibig U (2003) Novel nanoparticle matter: ZrN-nanoparticles. Appl Phys B Lasers Opt 77:681–686

    Article  CAS  Google Scholar 

  57. Szymczak W, Menzel N, Kreyling WG, Wittmaack K (2006) TOF-SIMS characterisation of spark-generated nanoparticles made from pairs of Ir-Ir and Ir-C electrodes. Int J Mass Spectrom 254:70–84

    Article  CAS  Google Scholar 

  58. Reijme MA, Maas AJH, Viitanen MM, van der Gon AWD, Brongersma HH, Bosman AW, Meijer EW (2001) Intramolecular segregation in polymers and macromolecules studied by low-energy ion scattering. Surf Sci 482:1235–1240

    Article  Google Scholar 

  59. Jansen WPA, Harmsen JMA, von der Gon AWD, Hoebink J, Schouten JC, Brongersma HH (2001) Noble metal segregation and cluster size of Pt/Rh/CeO2/gamma-Al2O3 automotive three-way catalysts studied with low-energy ion scattering. J Catal 204:420–427

    Article  CAS  Google Scholar 

  60. Scalf J and West P Part I: Introduction to Nanoparticle Characterization with AFM www.nanoparticles.org/pdf/Scalf-West.pdf (last accessed November 23, 2009)

  61. Serry FM (2005) Environmental controls for scanning probe microscopy with applications in NanoScience and nanotechnology development. Microsc Microanal 11:380–381

    Article  Google Scholar 

  62. McCarthy GS, Weiss PS (1999) Scanning probe studies of single nanostructures. Chem Rev 99:1983–1990

    Article  Google Scholar 

  63. Vakarelski IU, Brown SC, Moudgil BM, Higashitani K (2007) Nanoparticle-terminated scanning probe microscopy tips and surface samples. Advance Powder Technology 18:605–614

    Article  CAS  Google Scholar 

  64. Gupta S, Brouwer P, Bandyopadhyay S, Patil S, Briggs R, Jain J, Seal S (2005) TEM/AFM investigation of size and surface properties of nanocrystalline ceria. Journal of Nanoscience and Nanotechnology 5:1101–1107

    Article  CAS  Google Scholar 

  65. Daniel S, Rao TP, Rao KS, Rani SU, Naidu GRK, Lee HY, Kawai T (2007) A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens Actuators, B Chem 122:672–682

    Article  Google Scholar 

  66. Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, Pirio G, Legagneux P, Wyczisk F, Olivier J, Pribat D (2002) Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy. J Vac Sci Technol B 20:116–121

    Article  CAS  Google Scholar 

  67. Zhang G, Sun S, Yang D, Dodelet J-P, Sacher E (2008) The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 46:196–205

    Article  CAS  Google Scholar 

  68. Smith B, Wepasnick K, Schrote KE, Cho HH, Ball WP, Fairbrother DH (2009) Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure-property relationship. Langmuir 25:9767–9776

    Article  CAS  Google Scholar 

  69. Shiraishi M, Swaraj S, Takenobu T, Iwasa Y, Ata M and Unger WES (2005) Spectroscopic characterization of single-walled carbon nanotubes carrier-doped by encapsulation of TCNQ. Physical Review B 71:Article Number 125419

  70. Xu F, Minniti M, Barone P, Sindona A, Bonanno A, Oliva A (2008) Nitrogen doping of single walled carbon nanotubes by low energy N-2(+) ion implantation. Carbon 46:1489–1496

    Article  CAS  Google Scholar 

  71. Morant C, Andrey J, Prieto P, Mendiola D, Sanz JM, Elizalde E (2006) XPS characterization of nitrogen-doped carbon nanotubes. Phys Status Solidi A 203:1069–1075

    Article  CAS  Google Scholar 

  72. Felten A, Bittencourt C, Pireaux JJ (2006) Gold clusters on oxygen plasma functionalized carbon nanotubes: XPS and TEM studies. Nanotechnology 17:1954–1959

    Article  CAS  Google Scholar 

  73. Billinge SJL, Levin I (2007) The problem with determining atomic structure at the nanoscale. Science 316:561–565

    Article  CAS  Google Scholar 

  74. Chen W, Pan XL, Willinger MG, Su DS, Bao XH (2006) Facile autoreduction of iron oxide/carbon nanotube encapsulates. J Am Chem Soc 128:3136–3137

    Article  CAS  Google Scholar 

  75. Kuchibhatla S, Karakoti AS and Seal S (2007) Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures - a true template-free self-assembly. Nanotechnology 18

  76. Zhang HZ, Gilbert B, Huang F, Banfield JF (2003) Water-driven structure transformation in nanoparticles at room temperature. Nature 424:1025–1029

    Article  CAS  Google Scholar 

  77. Phillips R, Quake SR (2006) The biological frontier of physics. Phys Today 59:38

    Article  CAS  Google Scholar 

  78. Scher EC, Manna L, Alivisatos AP (2003) Shape control and applications of nanocrystals. Philos Trans R Soc Lond Ser A: Math Phys Sci 361:241–255

    Article  CAS  Google Scholar 

  79. Frankamp BL, Boal AK, Tuominen MT, Rotello VM (2005) Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly. J Am Chem Soc 127:9731–9735

    Article  CAS  Google Scholar 

  80. Gaspar DJ, Engelhard MH, Henry MC, Baer DR (2005) Erosion rate variations during XPS sputter depth profiling of nanoporous films. Surf Interface Anal 37:417–423

    Article  CAS  Google Scholar 

  81. Baer DR, Burrows PE, El-Azab AA (2003) Enhancing coating functionality using nanoscience and nanotechnology. Prog Org Coat 47:342–356

    Article  CAS  Google Scholar 

  82. Baer DR, Engelhard MH, Gaspar DJ, Matson DW, Pecher KH, Williams JR and Wang CM (2005) Challenges in applying surface analysis methods to nanoparticles and nanostructured materials. Journal of Surface Analysis 12

  83. ASTM E 1078–02 - Standard Guide for Specimen Preparation and Mounting in Surface Analysis (2006) Annual Book of ASTM Standards

  84. ISO 18116:2005, Surface Chemical Analysis—Guidelines for preparation and mounting of specimens for analysis, International Organization for Standardization (2005) Geneva, Switzerland

  85. Dane A, Demirok UK, Aydinli A, Suzer S (2006) X-ray photoelectron spectroscopic analysis of Si nanoclusters in SiO2 matrix. J Phys Chem B 110:1137–1140

    Article  CAS  Google Scholar 

  86. Wertheim GK, Dicenzo SB (1988) Cluster growth and core-electron binding-energies in supported metal-clusters. Phys Rev B 37:844–847

    Article  CAS  Google Scholar 

  87. Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao DL, Bridges F, Van Buuren A (2002) Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem, B 106:7005–7012

    Article  CAS  Google Scholar 

  88. Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246–2252

    Article  CAS  Google Scholar 

  89. Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski ZR, Stern O, Forchel A (2001) Coupling and entangling of quantum states in quantum dot molecules. Science 291:451–453

    Article  CAS  Google Scholar 

  90. Schwartz DA, Norberg NS, Nguyen QP, Parker JM, Gamelin DR (2003) Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of CO2+- and Ni2+-doped ZnO nanocrystals. J Am Chem Soc 125:13205–13218

    Article  CAS  Google Scholar 

  91. Glover M, Meldrum A (2005) Effect of "buffer layers" on the optical properties of silicon nanocrystal superlattices. Opt Mater 27:977–982

    Article  CAS  Google Scholar 

  92. Unger WES, Gross T (1998) Catalyst characterization. In: Riviere JC, Myhra S (eds) Handbook of surface and interface analysis: methods for problem solving. Marcel Dekker, Inc., New York

    Google Scholar 

  93. Van Santen RA, Piet WNMvL, Moulijn JA, Averill BA (2002) Catalysis: an integrated approach. Elsevier Science, Amsterdam

    Google Scholar 

  94. Venezia AM, Rossi A, Duca SD, Marorana A, Deganello G (1995) Particle-size and metal-support interaction effects in pumice supported palladium catalysts. Appl Catal, A 125:113–128

    Article  CAS  Google Scholar 

  95. Available from the World Wide Web: X-Ray Photoelectron Spectroscopy Characterization of Nanoparticles (NPs) http://www.scribd.com/doc/2194883/Nano-XPS-nanost-1

  96. Piyakis KN, Yang DQ, Sacher E (2003) The applicability of angle-resolved XPS to the characterization of clusters on surfaces. Surf Sci 536:139–144

    Article  CAS  Google Scholar 

  97. Merzlikin SVNN, Tolkachev NNT, Strunskus T, Witte G, Glogowski T, Wöll C, Grünert W (2008) Resolving the depth coordinate in photoelectron spectroscopy - Comparison of excitation energy variation vs. angular-resolved XPS for the analysis of a self-assembled monolayer model system. Surf Sci 602:755–767

    Article  CAS  Google Scholar 

  98. Merzlikin S (2007) Depth Profiling by X-ray Photoelectron Spectroscopy. Faculty of Chemistry, Laboratory of Industrial Chemistry, Doctor of Natural Science. http://deposit.ddb.de/cgi-bin/dokserv?idn=987575090&dok_var=d1&dok_ext=pdf&filename=987575090.pdf (last accessed November 23, 2009)

  99. Fulghum JE, Linton RW (1988) Quantitation of coverages on rough surfaces by XPS - an overview. Surf Interface Anal 13:186–192

    Article  CAS  Google Scholar 

  100. Fulghum JE, Linton RW (1989) Evaluation of XPS for the quantitative-determination of surface coverages - fluoride adsorption on hydrous ferric-oxide particles. J Electron Spectrosc Relat Phenom 49:101–118

    Article  CAS  Google Scholar 

  101. Gunter PLJ, Gijzeman OLJ, Niemantsverdriet JW (1997) Surface roughness effects in quantitative XPS: magic angle for determining overlayer thickness. Appl Surf Sci 115:342–346

    Article  CAS  Google Scholar 

  102. Werner WSM (1995) Magic-angle for surface-roughness for intensity ratios in AES/XPS. Surf Interface Anal 23:696–704

    Article  CAS  Google Scholar 

  103. ISO 19319: Surface chemical analysis - Auger electron spectroscopy and X-ray photoelectron spectroscopy - Determination of lateral resolution, analysis area, and sample area viewed by the analyser (2003) International Organization for Standards. Geneva, Switzerland

  104. Qi WH (2006) Modeling the relaxed cohesive energy of metallic nanoclusters. Mater Lett 60:1678–1681

    Article  CAS  Google Scholar 

  105. Postawa Z, Czerwinski B, Szewczyk M, Smiley EJ, Winograd N, Garrison BJ (2004) Microscopic insights into the sputtering of Ag{111} induced by C-60 and Ga bombardment. J Phys Chem, B 108:7831–7838

    Article  CAS  Google Scholar 

  106. Shimizu R (2005) Monte Carlo simulation studies in Japan on interaction of charged particles with solids during those early days in 1960 s-1970 s. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 232:117–124

    Article  CAS  Google Scholar 

  107. Jarvi TT, Pakarinen JA, Kuronen A, Nordlund K (2008) Enhanced sputtering from nanoparticles and thin films: Size effects. EPL 82

  108. Jurac S, Johnson RE, Donn B (1998) Monte Carlo calculations of the sputtering of grains: enhanced sputtering of small grains. Astrophys J 503:247–252

    Article  CAS  Google Scholar 

  109. Adriaensen L, Vangaever F, Gijbels R (2004) Metal-assisted secondary ion mass spectrometry: influence of Ag and Au deposition on molecular ion yields. Anal Chem 76:6777–6785

    Article  CAS  Google Scholar 

  110. Marcus A, Winograd N (2006) Metal nanoparticle deposition for TOF-SIMS signal enhancement of polymers. Anal Chem 78:141–148

    Article  CAS  Google Scholar 

  111. Chen HH, Urquidez OA, Ichim S, Rodriguez LH, Brenner MP, Aziz MJ (2005) Shocks in ion sputtering sharpen steep surface features. Science 310:294–297

    Article  CAS  Google Scholar 

  112. Starostina N, West P (2007) AFM Metrology for nanoparticle & nanostructures charqacterization: visualization, morphology quantitation and probe artifacts. In: Hackley VA, Patri AK, Stein J, Moudgil BM (eds) Materials research society. Materials Research Society, San Francisco

    Google Scholar 

  113. Wong C, West PE, Olson KS, Mecartney ML, Starostina N (2007) Tip dilation and AFM capabilities in the characterization of nanoparticles. JOM 59:12–16

    Article  Google Scholar 

  114. Braga PC, Ricci D (2004) Atomic Force Microscopy. Humana Press

  115. ASTM E2382 - 04 Guide to Scanner and Tip Related Artifacts in Scanning Tunneling Microscopy and Atomic Force Microscopy (2004) Annual Book of ASTM Standards

  116. Eisenthal KB (2006) Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem Rev 106:1462–1477

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper has evolved from research programs supported by the US Department of Energy (DOE) and research conducted as part of the Environmental Molecular Sciences Laboratory (EMSL) User Program. It has benefited from interactions with colleagues from around the world and input from experts associated with ISO TC 201 Surface Chemical Analysis and ASTM Committee E42 on Surface Analysis. Aspects of the work have been supported by the DOE Offices of Basic Energy Sciences and Biological and Environmental Research. Portions of this work were conducted in EMSL, a DOE user facility operated by Pacific Northwest National Laboratory for the DOE Office of Biological and Environmental Research. We thank MH Engelhard for the XPS data on the iron nanoparticles. DGC and SDT thank NIH grants EB-002027 and GM-074511 for support and for funding some of the experimental work described in this paper. SDT thanks the NSF for an IGERT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Baer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baer, D.R., Gaspar, D.J., Nachimuthu, P. et al. Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396, 983–1002 (2010). https://doi.org/10.1007/s00216-009-3360-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3360-1

Keywords

Navigation