Skip to main content
Log in

Study on elution behavior of poly(amidoamine) dendrimers and their interaction with bovine serum albumin in asymmetrical flow field-flow fractionation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polyamidoamine (PAMAM) dendrimers have an amine surface and an ethylenediamine core and are of great interest in various applications such as in drug delivery. Physiochemical properties of PAMAM dendrimers vary with pH. At neutral to basic pH, PAMAM dendrimers are either weakly charged or uncharged and tend to adsorb on to the neutral packing material, making chromatographic separation of the dendrimers difficult. Asymmetrical flow field-flow fractionation (AsFlFFF) was tested as an alternative to the chromatographic techniques for separation of the PAMAM dendrimers. AsFlFFF provided generation-based separation of the dendrimers even at neutral and basic pH. The elution time increased gradually as the generation number (and thus the size) increased. Separation of impurities such as generational or missing-arm impurities and aggregates from the main population was also achieved. Electrostatic and hydrophobic interactions (e.g., repulsive elecrostatic interaction among the dendrimer molecules or attractive hydrophobic interaction between the dendrimer molecules and the membrane) may result in an inaccurate size measurement. Careful optimization of experimental conditions such as the flow rate, pH, and the salt concentration may be required to minimize the interactions with the membrane. AsFlFFF was also tested for a study on the interaction between the PAMAM dendrimers and proteins. AsFlFFF was able to show the growth in the size of bovine serum albumin (BSA) when BSA is mixed with increasing amounts of PAMAM dendrimers. Results suggest that, with proper optimization, AsFlFFF could become a useful tool for separation and characterization of large charged molecules such as PAMAM dendrimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tomalia DA, Naylor AM, Goddard WA (1990) Angew Chem Int Ed Engl 29:138–175

    Article  Google Scholar 

  2. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J 17:117–132

    Article  CAS  Google Scholar 

  3. Matthews OA, Shipway AN, Stoddart JF (1998) Prog Polym Sci 23:1–56

    Article  CAS  Google Scholar 

  4. Maiti PK, Cagin T, Lin ST, Goddard WA III (2005) Macromolecules 38:979–991

    Article  CAS  Google Scholar 

  5. Shi X, Majoros IJ, Baker JR (2005) Mol Pharmaceutics 2:278–294

    Article  CAS  Google Scholar 

  6. Peterson J, Allikmaa V, Subbi J, Pehk T, Lopp M (2003) Eur Polym J 39:33–42

    Article  CAS  Google Scholar 

  7. Ebber A, Vaher M, Peterson J, Lopp M (2002) J Chromatogr A 949:351–358

    Article  CAS  Google Scholar 

  8. Meltzer AD, Tirrell DA, Jones AA, Inglefield PT (1992) Macromolecules 25:4541–4548

    Article  CAS  Google Scholar 

  9. Brothers HM, Piehler LT, Tomalia DA (1998) J Chromatogr A 814:233–246

    Article  CAS  Google Scholar 

  10. Kallos GJ, Tomalia DA, Hedstrand DM, Lewis S, Zhou J (1991) Rapid Commun Mass Spectrom 5:383–386

    Article  CAS  Google Scholar 

  11. Zhou L, Russell DH, Zhao M, Crooks RM (2001) Macromolecules 34:3567–3573

    Article  CAS  Google Scholar 

  12. Meltzer AD, Tirrell DA, Jones AA, Inglefield PT (1992) Macromolecules 25:4549–4552

    Article  CAS  Google Scholar 

  13. Nourse A, Millar DB, Minton AP (2000) Biopolymers 53:316–328

    Article  CAS  Google Scholar 

  14. Mengerink Y, Mure M, De Brabander EMM, Van der Wal SJ (1996) J Chromatogr A 730:75–81

    Article  CAS  Google Scholar 

  15. Sedlakova A, Svobodova J, Miksik I, Tomas H (2006) J Chromatogr B 841:135–139

    Article  CAS  Google Scholar 

  16. Klajnert B, Bryszewska M (2002) Bioelectrochemistry 55:33–35

    Article  CAS  Google Scholar 

  17. Klajnert B, Stanislawska L, Bryszewska M, Palecz B (2003) Biochim Biophys Acta 1648:115–126

    CAS  Google Scholar 

  18. Giddings JC (1993) Science 260:1456–1465

    Article  CAS  Google Scholar 

  19. Benincasa MA, Giddings JC (1992) Anal Chem 64:790–798

    Article  CAS  Google Scholar 

  20. Kirkland JJ, Dilks CH, Rementer SW (1992) Anal Chem 64:1295–1303

    Article  CAS  Google Scholar 

  21. Giddings JC, Benincasa MA, Liu MK, Li P (1992) J Liq Chromatogr 15:1729–1747

    Article  CAS  Google Scholar 

  22. Liu MK, Giddings JC (1993) Macromolecules 26:3576–3588

    Article  CAS  Google Scholar 

  23. Thielking H, Roessner D, Kulicke WM (1995) Anal Chem 67:3229–3233

    Article  CAS  Google Scholar 

  24. Nilsson M, Birnbaum S, Wahlund KG (1996) J Biochem Biophys Methods 33:9–23

    Article  CAS  Google Scholar 

  25. Newcombe G, Drikas M, Assemi S, Beckett R (1997) Water Res 31:965–972

    Article  CAS  Google Scholar 

  26. Pelekani C, Newcombe G, Snoeyink VL, Hepplewhite C, Assemi S, Beckett R (1999) Environ Sci Technol 33:2807–2813

    Article  CAS  Google Scholar 

  27. Stevenson SG, Ueno T, Preston KR (1999) Anal Chem 71:8–14

    Article  CAS  Google Scholar 

  28. Bang DY, Shin DY, Lee S, Moon MH (2007) J Chromatogr A 1147:200–205

    Article  CAS  Google Scholar 

  29. Wahlund KG, Giddings JC (1987) Anal Chem 59:1332–1339

    Article  CAS  Google Scholar 

  30. Litzen A, Wahlund KG (1989) J Chromatogr 476:413–421

    Article  CAS  Google Scholar 

  31. Williams PS (1997) J Micro Sep 9:459–467

    Article  CAS  Google Scholar 

  32. Litzen A, Wahlund KG (1991) Anal Chem 63:1001–1007

    Article  CAS  Google Scholar 

  33. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, NY

    Google Scholar 

  34. Litzen A, Wahlund KG (1991) J Chromatogr 548:393–406

    Article  CAS  Google Scholar 

  35. Pontie M (1999) J Membr Sci 154:213–220

    Article  CAS  Google Scholar 

  36. Schimpf ME, Caldwell KD, Giddings JC (2000) Field-flow fractionation handbook. Wiley Interscience, New York, pp 435–436

    Google Scholar 

  37. Yang H, Kao WJ (2006) J Biomater Sci Polym Edn 17:3–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Hannam University and Korea Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Vilas Nehete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kwen, H.D., Lee, S.K. et al. Study on elution behavior of poly(amidoamine) dendrimers and their interaction with bovine serum albumin in asymmetrical flow field-flow fractionation. Anal Bioanal Chem 396, 1581–1588 (2010). https://doi.org/10.1007/s00216-009-3353-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3353-0

Keyword

Navigation