Skip to main content
Log in

A rapid and universal bacteria-counting approach using CdSe/ZnS/SiO2 composite nanoparticles as fluorescence probe

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a rapid, simple, and sensitive method was described for detection of the total bacterial count using SiO2-coated CdSe/ZnS quantum dots (QDs) as a fluorescence marker that covalently coupled with bacteria using glutaraldehyde as the crosslinker. Highly luminescent CdSe/ZnS were prepared by applying cadmium oxide and zinc stearate as precursors instead of pyrophoric organometallic precursors. A reverse-microemulsion technique was used to synthesize CdSe/ZnS/SiO2 composite nanoparticles with a SiO2 surface coating. Our results showed that CdSe/ZnS/SiO2 composite nanoparticles prepared with this method possessed highly luminescent, biologically functional, and monodispersive characteristics, and could successfully be covalently conjugated with the bacteria. As a demonstration, it was found that the method had higher sensitivity and could count bacteria in 3 × 102 CFU/mL, lower than the conventional plate counting and organic dye-based method. A linear relationship of the fluorescence peak intensity (Y) and the total bacterial count (X) was established in the range of 3 × 102–107 CFU/mL using the equation Y = 374.82X − 938.27 (R = 0.99574). The results of the determination for the total count of bacteria in seven real samples were identical with the conventional plate count method, and the standard deviation was satisfactory.

The synthesis and coupling process of CdSe/ZnS/SiO2 composite nanoparticles with bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kubitschek HE (1990) Cell volume increase in Escherichia coli after shifts to richer media. J Bacteriol 172:94–101

    CAS  Google Scholar 

  2. Rolhion N, Darfeuille-Michaud A (2007) Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis 13:1277–1283

    Article  Google Scholar 

  3. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999) Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosens Bioelectron 14:309–316

    Article  CAS  Google Scholar 

  4. Salinas F, Garrido D, Ganga A, Veliz G, Martinez C (2009) Taqman real-time PCR for the detection and enumeration of Saccharomyces cerevisiae in wine. Food Microbiol 26:328–332

    Article  CAS  Google Scholar 

  5. Pavlova D, Wet CME, Grabow WOK, Ehlers MM (2004) Potentially pathogenic features of heterotrophic plate count bacteria isolated from treated and untreated drinking water. Int J Food Microbiol 92:275–287

    Article  Google Scholar 

  6. Gunasekera ST, Attfield VP, Veal AD (2000) A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl Environ Microbiol 66:1228–1232

    Article  CAS  Google Scholar 

  7. Johnson JL, Rose BE, Sharar AK, Ransom GM, Lattuada CP, McNamara AM (1995) Methods used for detection and recovery of Escherichia coli O157:H7 associated with a food-borne disease outbreak. J Food Prot 58:597–603

    Google Scholar 

  8. Scolaro LM, Castriciano M, Romeo A, Patane S, Cefali E, Allegrini M (2002) Aggregation behavior of protoporphyrin IX in aqueous solutions: clear evidence of vesicle formation. J Phys Chem B 106:2453–2459

    Article  CAS  Google Scholar 

  9. Santra S, Liesenfeld B, Bertolino C, Dutta D, Cao ZH, Tan WH, Moudgil BM, Mericle RA (2006) Fluorescence lifetime measurements to determine the core–shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability. J Lumin 117:75–82

    Article  CAS  Google Scholar 

  10. Luo J, Liu XH, Tian Q, Yue WW, Zeng J, Chen GQ, Cai XX (2009) Disposable bioluminescence-based biosensor for detection of bacterial count in food. Anal Biochem. doi:10.1016/j.ab.2009.05.021

    Google Scholar 

  11. Yamashoji S, Asakawa A, Kawasaki S, Kawamoto S (2004) Chemiluminescent assay for detection of viable microorganisms. Anal Biochem 333:303–308

    Article  CAS  Google Scholar 

  12. Maruyama F, Yamaguchi N, Kenzaka T, Tani K, Nasu M (2004) Simplified sample preparation using frame spotting method for direct counting of total bacteria by fluorescence microscopy. J Microbiol Meth 59:427–431

    Article  CAS  Google Scholar 

  13. Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    CAS  Google Scholar 

  14. Bruchez JM, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  15. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  16. Zhang Y, Deng ZT, Yue JC, Tang FQ, Wei Q (2007) Using cadmium telluride quantum dots as a proton flux sensor and applying to detect H9 avian influenza virus. Anal Biochem 364:122–127

    Article  CAS  Google Scholar 

  17. Xue XH, Pana J, Xie HM, Wang JH, Zhang S (2009) Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Talanta 77:1808–1813

    Article  CAS  Google Scholar 

  18. Su XL, Li YB (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76:4806–4810

    Article  CAS  Google Scholar 

  19. Son A, Dosev D, Nichkova M, Ma ZY, Kennedy LM, Scow KM, Hristova KR (2007) Quantitative DNA hybridization in solution using magnetic/luminescent core–shell nanoparticles. Anal Biochem 370:186–194

    Article  CAS  Google Scholar 

  20. Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JHM, Nabieva I (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 324:60–67

    Article  CAS  Google Scholar 

  21. Santra S, Zhang P, Wang KM, Tapec R, Tan W (2001) Conjugation of biomolecules with luminophored silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993

    Article  CAS  Google Scholar 

  22. Wang L, Tan W (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6:84–88

    Article  CAS  Google Scholar 

  23. He XX, Chen JY, Wang KM, Qin DL, Tan WH (2007) Preparation of luminescent Cy5 doped core-shell SFNPs and its application as a near-infrared fluorescent marker. Talanta 72:1519–1526

    Article  CAS  Google Scholar 

  24. Rossi LM, Shi L, Rosenzweig N, Rosenzweig Z (2006) Fluorescent silica nanospheres for digital counting bioassay of the breast cancer marker HER2/nue. Biosens Bioelectron 21:1900–1906

    Article  CAS  Google Scholar 

  25. Hillard LR, Zhao X, Tan W (2002) Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 470:51–56

    Article  Google Scholar 

  26. Azioure A, Slimane AB, Hamou LA, Pleuvy A, Chehimi MM, Perruchot C, Armes SP (2004) Synthesis and characterization of active ester-functionalized polypyrrole-silica nanoparticles: application to the covalent attachment of proteins. Langmuir 20:3350–3356

    Article  Google Scholar 

  27. Nakamura M, Ishimura K (2007) Synthesis and characterization of organosilica nanoparticles prepared from 3-mercaptopropyltrimethoxysilane as the single silica source. J Phys Chem C 111:18892–18898

    Article  CAS  Google Scholar 

  28. Santra S, Wang K, Tapec R, Tan W (2001) Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt 6:160–166

    Article  CAS  Google Scholar 

  29. Tapec R, Zhao XJ, Tan W (2002) Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol 2:405–409

    Article  CAS  Google Scholar 

  30. Wang C, Ma Q, Dou WC, Kanwal S, Wang GN, Yuan PF, Su XG (2009) Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes. Talanta 77:1358–1364

    Article  CAS  Google Scholar 

  31. Jin L, Yu DD, Liu Y, Zhao XL, Zhou JG (2008) The application of CdTe@SiO2 particles in immunoassay. Talanta 76:1053–1057

    Article  CAS  Google Scholar 

  32. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2:781–784

    Article  CAS  Google Scholar 

  33. Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620–1625

    Article  CAS  Google Scholar 

  34. Yang Y, Gao MY (2005) Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater 17:2354–2357

    Article  CAS  Google Scholar 

  35. Ye Z, Tan M, Wang G, Yuan J (2004) Preparation, characterization and time-resolved fluorometric application of silica-coated terbium(III) fluorescent nanoparticles. Anal Chem 76:513–518

    Article  CAS  Google Scholar 

  36. Ye Z, Tan M, Wang G, Yuan J (2005) Development of functionalized terbium fluorescent nanoparticles for antibody labeling and time-resolved fluoroimmunoassay application. Talanta 65:206–210

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Huang, K. & Liu, S. A rapid and universal bacteria-counting approach using CdSe/ZnS/SiO2 composite nanoparticles as fluorescence probe. Anal Bioanal Chem 396, 1397–1404 (2010). https://doi.org/10.1007/s00216-009-3352-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3352-1

Keywords

Navigation