Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 189–203 | Cite as

Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes

  • Mehmet Gumustas
  • Sibel A. Ozkan
Original Paper


Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H2SO4 and phosphate buffer at pH 2.0 which allow quantitation over a 4 × 10−6 to 8 × 10−5 M range using boron-doped diamond and a 1 × 10−5 to 1 × 10−4 M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.


Fosamprenavir Oxidation mechanism Glassy carbon Boron-doped diamond Determination Voltammetry 



This work was realized the BAS 100 W equipment which is supplied from Ankara University Scientific Research Foundation Projects (Grant No: 20030803037 and 20030803043). We are grateful to Dr. Jose Luis Beltran from University of Barcelona for the STAR program.


  1. 1.
    Sweetman SC (2005) The complete drug reference, Martindale, 34th edn. Pharmaceutical Press, SuffolkGoogle Scholar
  2. 2.
    Weiss J, Rose J (2000) J Antimicrobial Chemotherapy 59:238–245CrossRefGoogle Scholar
  3. 3.
    Lexiva® US prescribing information (2008) GlaxoSmithKlineGoogle Scholar
  4. 4.
    Rebiere H, Mazel B, Civade C, Bonnet PA (2007) J Chromatogr A 850:376–383Google Scholar
  5. 5.
    Mahmoud KA, Luong JH (2008) Anal Chem 80:7056–7062CrossRefGoogle Scholar
  6. 6.
    Ter Heine R, Davids M, Rosing H, Van Gorp ECM, Mulder JW, Van der Heide YT, Beijnen JH, Huitema ADR (2009) J Chromatogr B 877:575–580CrossRefGoogle Scholar
  7. 7.
    D’Avolio A, Siccardi M, Sciandra M, Lorena B, Bonora S, Trentini L, Di Perri G (2007) J Chromatogr B 859:234–240CrossRefGoogle Scholar
  8. 8.
    Dickinson L, Robinson L, Tjia J, Khoo S, Back D (2005) J Chromatogr B 829:82–90CrossRefGoogle Scholar
  9. 9.
    Colombo S, Beguin A, Telenti A, Biollaz J, Buclin T, Rochat B, Decosterd LA (2005) J Chromatogr B 819:259–276CrossRefGoogle Scholar
  10. 10.
    Pereira SA, Kenney KB, Cohen MS, Eron JJ, Tidwella RR, Dunn JA (2002) J Chromatogr B 766:307–317CrossRefGoogle Scholar
  11. 11.
    Verbesselt R, Van Wijngaerden E, De Hoon J (2007) J Chromatogr B 845:51–60CrossRefGoogle Scholar
  12. 12.
    Keil K, Frerichs VA, DiFrancesco R, Morse G (2003) Ther Drug Monit 25:340–346CrossRefGoogle Scholar
  13. 13.
    Justesen US, Pedersen C, Klitgaard A (2003) J Chromatogr B 783:491–500CrossRefGoogle Scholar
  14. 14.
    Turner ML, Reed-Walker K, King JR, Acosta EP (2003) J Chromatogr B 784:331–341CrossRefGoogle Scholar
  15. 15.
    Dailly E, Thomas L, Kergueris MF, Jolliet P, Bourin M (2001) J Chromatogr B 758:129–135CrossRefGoogle Scholar
  16. 16.
    Sarasa-Nacenta M, Lopez-Pua Y, Mallolas J, Luis Blanco J, Gatell JM, Carne X (2001) J Chromatogr B 757:325–332CrossRefGoogle Scholar
  17. 17.
    Wang J (1996) Electroanalytical techniques in clinical chemistry and laboratory medicine. VCH, New YorkGoogle Scholar
  18. 18.
    Kissinger PT, Heineman WR (1996) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  19. 19.
    Gosser DK (1993) Cyclic voltammetry, simulation and analysis of reaction mechanism. VCH, New YorkGoogle Scholar
  20. 20.
    Kauffmann JM, Vire JC (1993) Anal Chim Acta 273:329–334CrossRefGoogle Scholar
  21. 21.
    Smyth MR, Vos JG (1992) Analytical voltammetry. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Uslu B, Ozkan SA (2007) Anal Lett 40:817–853CrossRefGoogle Scholar
  23. 23.
    Yardımcı C, Özaltın N (2001) Analyst 126:361–366CrossRefGoogle Scholar
  24. 24.
    Ozkan SA, Uslu B, Aboul-Enein HY (2003) Crit Rev Anal Chem 33:155–181CrossRefGoogle Scholar
  25. 25.
    Uslu B, Ozkan SA (2007) Comb Chem High Through Screen 10:495–513CrossRefGoogle Scholar
  26. 26.
    Dogan-Topal B, Uslu B, Ozkan SA, Zuman P (2008) Anal Chem 80:209–216CrossRefGoogle Scholar
  27. 27.
    Goeting CH, Jones F, Foord JS, Eklund JC, Marken F, Compton RC, Chalker PR, Johnston C (1998) J Electroanal Chem 442:207–216CrossRefGoogle Scholar
  28. 28.
    Peleskov YV (2002) Russian J Electrochemistry 38:1275–1291CrossRefGoogle Scholar
  29. 29.
    Lawrence NS, Pagels M, Meredith A, Jones TGJ, Hall CE, Pickles CSJ, Godfried HP, Banks CE, Compton RG, Jiang L (2006) Talanta 69:829–834CrossRefGoogle Scholar
  30. 30.
    Compton RG, Foord JS, Marken F (2003) Electroanalysis 15:1349–1363CrossRefGoogle Scholar
  31. 31.
    Rao TN, Fujishima A (2000) Diamond and Related Materials 9:384–389CrossRefGoogle Scholar
  32. 32.
    Fortin E, Chane-Tune J, Delabouglise D, Bouvier P, Livache T, Mailley P, Marcus B, Mermoux M, Petit JP, Szunerits S, Vieil E (2005) Electroanal 17:517–526CrossRefGoogle Scholar
  33. 33.
    Goeting CH, Marken F, Gutierrez-Sosa A, Compton RG, Foord JS (2000) Diamond and Related Materials 9:390–396CrossRefGoogle Scholar
  34. 34.
    Riley CM, Rosanske TM (1996) Development and validation of analytical methods. Elsevier, New YorkGoogle Scholar
  35. 35.
    Swartz ME, Krull IS (1997) Analytical method development and validation. Marcel Dekker, New YorkGoogle Scholar
  36. 36.
    Ermer J, JHMcB M (2005) Method validation in pharmaceutical analysis. Weinheim, Wiley VCHCrossRefGoogle Scholar
  37. 37.
    De Bievre P, Gunzler H (2005) Validation in chemical measurements. Springer, BerlinCrossRefGoogle Scholar
  38. 38.
    Marcus Y (1989) J Chem Soc Faraday Trans 85:381–388CrossRefGoogle Scholar
  39. 39.
    Gran G (1952) Analyst 7:661–671CrossRefGoogle Scholar
  40. 40.
    Beltrán JL, Codony R, Prat MD (1993) Anal Chim Acta 276:441–454CrossRefGoogle Scholar
  41. 41.
    Laviron E, Roullier L, Degrand C (1980) J Electroanal Chem 112:11–23CrossRefGoogle Scholar
  42. 42.
    Goyal RN, Gupta VK, Oyama M, Bachheti N (2006) Electrochem Commun 8:65–70CrossRefGoogle Scholar
  43. 43.
    Goyal RN, Jein N, Gurnani V (2001) Monatsh Chem 132:575–585CrossRefGoogle Scholar
  44. 44.
    Hart JP (1990) Electroanalysis of biologically important compounds. Horwood, EnglandGoogle Scholar
  45. 45.
    Vire JC, Kauffmann JM (1994) Curr Top Electrochem 3:493–515Google Scholar
  46. 46.
    Suzen S, Demircigil BT, Buyukbingol E, Ozkan SA (2003) New J Chem 27:1007–1011CrossRefGoogle Scholar
  47. 47.
    Grimshaw J (2000) Electrochemical reactions and mechanism in organic chemistry. Elsevier, New YorkGoogle Scholar
  48. 48.
    Bermejo E, Zapardiel A, Perez-Lopez JA, Chicharro M, Sanchez A, Hernandez L (2000) J Electroanal Chem 481:52–61CrossRefGoogle Scholar
  49. 49.
    Ozkan SA, Uslu B, Senturk Z (2004) Electroanalysis 16:231–237CrossRefGoogle Scholar
  50. 50.
    Demircigil BT, Uslu B, Ozkan Y, Ozkan SA, Sentürk Z (2003) Electroanalysis 15:230–234CrossRefGoogle Scholar
  51. 51.
    Moane S, Barreira Rodriguez JR, Miranda Ordieres AJ, Tunon Blanco P, Smyth MR (1995) J Pharm Biomed Anal 14:57–63CrossRefGoogle Scholar
  52. 52.
    Sharma LR, Kalia RK (1976) Electrochim Acta 21:1085–1087CrossRefGoogle Scholar
  53. 53.
    Mc Grath GJ, O’Kane E, Smyth WF, Tagliaro F (1996) Anal Chim Acta 322:159–166CrossRefGoogle Scholar
  54. 54.
    Wang Z, Zhang H, Zhou S, Dong W (2001) Talanta 53:1133–1138CrossRefGoogle Scholar
  55. 55.
    Lund H, Hammerich O (2001) Organic electrochemistry, 4th edn. Marcel Dekker, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of Pharmacy, Department of Analytical ChemistryAnkara UniversityAnkaraTurkey
  2. 2.Faculty of Art & Science, Department of ChemistryHitit UniversityCorumTurkey

Personalised recommendations