Skip to main content
Log in

Influence of salt ions on binding to molecularly imprinted polymers

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Salt ions were found to have an influence on template binding to two model molecularly imprinted polymers (MIPs), targeted to penicillin G and propranolol, respectively, in water–acetonitrile mixtures. Water was detrimental to rebinding of penicillin G whereas propranolol bound in the entire water–acetonitrile range tested. In 100% aqueous solution, 3-M salt solutions augmented the binding of both templates. The effects followed the Hofmeister series with kosmotropic ions promoting the largest increase. Binding was mainly of a non-specific nature under these conditions. In acetonitrile containing low amounts of water, the specific binding to the MIPs increased with the addition of salts. Binding of penicillin G followed the Hofmeister series while an ion-exchange mechanism was observed for propranolol. The results suggest that hydration of kosmotropic ions reduces the water activity in water-poor media providing a stabilizing effect on water-sensitive MIP–template interactions. The effects were utilized to develop a procedure for molecularly imprinted solid-phase extraction (MISPE) of penicillin G from milk with a recovery of 87%.

Binding augmentation to a penicillin G imprinted MIP at the addition of kosmotropic ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kempe H, Kempe M (2008) In: Albericio F, Pulla-Tuche J (eds) The power of functional resins in organic synthesis. Wiley, Weinheim, pp 15–44

    Chapter  Google Scholar 

  2. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) J Mol Recognit 19:106–180

    Article  CAS  Google Scholar 

  3. Piletska EV, Guerreiro AR, Whitcombe MJ, Piletsky SA (2009) Macromolecules 42:4921–4928

    Article  CAS  Google Scholar 

  4. Takeuchi T, Fukuma D, Matsui J (1999) Anal Chem 71:285–290

    Article  CAS  Google Scholar 

  5. Lanza F, Sellergren B (1999) Anal Chem 71:2092–2096

    Article  CAS  Google Scholar 

  6. Cederfur J, Pei Y, Zihui M, Kempe M (2003) J Comb Chem 5:67–72

    Article  CAS  Google Scholar 

  7. Batra D, Shea KJ (2003) Curr Opin Chem Biol 7:434–442

    Article  CAS  Google Scholar 

  8. Dirion B, Cobb Z, Schillinger E, Andersson LI, Sellergren B (2003) J Am Chem Soc 125:15101–15109

    Article  CAS  Google Scholar 

  9. Kempe H, Kempe M (2004) Macromol Rapid Commun 25:315–320

    Article  CAS  Google Scholar 

  10. Davies MP, De Biasi V, Perrett D (2004) Anal Chim Acta 504:7–14

    Article  CAS  Google Scholar 

  11. Navarro-Villoslada F, San Vicente B, Moreno-Bondi MC (2004) Anal Chim Acta 504:149–162

    Article  CAS  Google Scholar 

  12. El-Toufaili F-A, Visnjevski A, Brüggemann O (2004) J Chromatogr B 804:135–139

    Article  CAS  Google Scholar 

  13. Rosengren AM, Karlsson JG, Andersson PO, Nicholls IA (2005) Anal Chem 77:5700–5705

    Article  CAS  Google Scholar 

  14. Piletsky SA, Karim K, Piletska EV, Day CJ, Freebairn KW, Legge C, Turner APF (2001) Analyst 126:1826–1830

    Article  CAS  Google Scholar 

  15. Subrahmanyam S, Piletsky SA, Piletska EV, Chen B, Karim K, Turner APF (2001) Biosens Bioelectron 16:631–637

    Article  CAS  Google Scholar 

  16. Andersson LI (1996) Anal Chem 68:111–117

    Article  CAS  Google Scholar 

  17. Dauwe C, Sellergren B (1996) J Chromatogr A 753:191–200

    Article  CAS  Google Scholar 

  18. Wulff G, Schönfeld R (1998) Adv Mater 10:957–959

    Article  CAS  Google Scholar 

  19. Karlsson JG, Andersson LI, Nicholls IA (2001) Anal Chim Acta 435:57–64

    Article  CAS  Google Scholar 

  20. Das K, Penelle J, Rotello VM (2003) Langmuir 19:3921–3925

    Article  CAS  Google Scholar 

  21. Turner NW, Piletska EV, Karim K, Whitcombe M, Malecha M, Magan N, Baggiani C, Piletsky SA (2004) Biosens Bioelectron 20:1060–1067

    Article  CAS  Google Scholar 

  22. Manesiotis P, Hall AJ, Courtois J, Irgum K, Sellergren B (2005) Angew Chem Int Ed 44:3902–3906

    Article  CAS  Google Scholar 

  23. Meng Z, Chen W, Mulchandani A (2005) Environ Sci Technol 39:8958–8962

    Article  CAS  Google Scholar 

  24. Urraca JL, Moreno-Bondi MC, Hall AJ, Sellergren B (2007) Anal Chem 79:695–701

    Article  CAS  Google Scholar 

  25. Piletska EV, Guerreiro AR, Romero-Guerra M, Chianella I, Turner APF, Piletsky SA (2008) Anal Chim Acta 607:54–60

    Article  CAS  Google Scholar 

  26. Kempe H, Kempe M (2006) Anal Chem 78:3659–3666

    Article  CAS  Google Scholar 

  27. Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  28. Kunz W, Henle J, Ninham BW (2004) Curr Opin Colloid Interface Sci 9:19–37

    Article  CAS  Google Scholar 

  29. Nucci NV, Vanderkooi JM (2008) J Mol Liq 143:160–170

    Article  CAS  Google Scholar 

  30. Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG Jr (2002) Proc Natl Acad Sci USA 99:6434–6439

    Article  CAS  Google Scholar 

  31. Dewdney JM, Maes L, Raynaud JP, Blanc F, Scheid JP, Jackson T, Lens S, Verschueren C (1991) Food Chem Toxicol 29:477–483

    Article  CAS  Google Scholar 

  32. EEC Council Regulation No. 2377/90 of 26 June 1990 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin (1990) Off J Eur Comm L224:1–8

    Google Scholar 

  33. Schweitz L, Spégel P, Nilsson S (2000) Analyst 125:1899–1901

    Article  CAS  Google Scholar 

  34. Lübke C, Lübke M, Whitcombe MJ, Vulfson EN (2000) Macromolecules 33:5098–5105

    Article  Google Scholar 

  35. Villamena FA, de la Cruz AA (2001) J Appl Polym Sci 82:195–205

    Article  CAS  Google Scholar 

  36. Brüggemann O (2001) Anal Chim Acta 435:197–207

    Article  Google Scholar 

  37. Vaihinger D, Landfester K, Kräuter I, Brunner H, Tovar GEM (2002) Macromol Chem Phys 203:1965–1973

    Article  CAS  Google Scholar 

  38. Karlsson JG, Karlsson B, Andersson LI, Nicholls IA (2004) Analyst 129:456–462

    Article  CAS  Google Scholar 

  39. Katchalsky A, Spitnik P (1947) J Polym Sci 2:432–446

    Article  CAS  Google Scholar 

  40. Baggiani C, Trotta F, Giraudi G, Moraglio G, Vanni A (1997) J Chromatogr A 786:23–29

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Swedish Research Council and the Swedish Foundation for Strategic Research (INGVAR, Individual Grant for the Advancement of Research Leaders).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kempe.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 867 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempe, H., Kempe, M. Influence of salt ions on binding to molecularly imprinted polymers. Anal Bioanal Chem 396, 1599–1606 (2010). https://doi.org/10.1007/s00216-009-3329-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3329-0

Keywords

Navigation