Stability of Se species in plant extracts rich in phenolic substances

Abstract

Since there is growing awareness of the strong dependence of the antioxidative function of selenium (Se) upon its chemical form, the stability of Se species during sample preparation is an important factor in obtaining qualitative and quantitative results. Many plant samples are rich in phenolic compounds (antioxidants), but data about their effect on specific Se species in extracts of plant samples are scarce. Therefore, the aim of this study was to investigate the effect of the most common phenolic substances in plant parts, namely tannin and the flavonoid rutin, on the concentration and/or transformation of several Se species (SeMet, SeCys2, SeMeSeCys, Se(VI) and Se(IV)) during sample preparation (24 h incubation at 37 °C) and storage (4 days at 4 °C). Moreover, the effect observed was then studied in a real sample, buckwheat, because this plant is known as a rich source of phenolics, especially tannin and rutin. Se speciation was carried out by on-line coupling of ion-exchange HPLC-ICP-MS after water and enzymatic (protease) hydrolysis. The results showed that the ratio between the two antioxidants has an important role. When the antioxidants were present together, the response for Se(IV) was observed to start to decrease only at a ratio of rutin to tannin of 1:100 (w/w), indicating the ratio between antioxidants in buckwheat seeds. After water extraction, only 40% and after enzymatic extraction 80% of Se(IV) remained, but no other Se compound was detected with the system used. Furthermore, the extracts were not stable during storage at 4 °C. Signals for other Se species were stable. The results obtained for buckwheat seeds showed a decrease in Se(IV) response during sample preparation and storage, comparable to the one obtained with the experiments performed in vitro. However, Se species in extracts of other buckwheat parts (leaves, stems and sprouts) were stable. These results indicate that reactions in the extraction process and during storage may affect Se speciation and may result in misidentifications and inaccurate values.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Kreft I, Fabjan N (2006) Yasumoto K 98:508–512

    CAS  Google Scholar 

  2. 2.

    Wach A, Pyrzynska K, Biesega M (2007) Food Chem 100:699–704

    CAS  Article  Google Scholar 

  3. 3.

    Ožbolt L, Kreft S, Kreft I, Germ M, Stibilj V (2008) Food Chem 110:691–696

    Article  Google Scholar 

  4. 4.

    Silva BA, Malva OJ, Dias CPA (2008) Food Chemistry 110:611–619

    CAS  Article  Google Scholar 

  5. 5.

    Munoz Olivas R, Quevauviller P, FX Donard O (1998) J Anal Chem 360:512–519

    CAS  Article  Google Scholar 

  6. 6.

    Gomez Ariza JL, Morales E, Sanchez-Rodas D, Giraldez I (2000) Trends Anal Chem 19:200–209

    Article  Google Scholar 

  7. 7.

    Lindemann T, Prange A, Dannecker W, Neidhart B (2000) J Anal Chem 368:214–220

    CAS  Article  Google Scholar 

  8. 8.

    Moreno P, Quijano MA, Gutierrez AM, Perez-Conde MC, Camara C (2002) Anal Bioanal Chem 374:466–476

    CAS  Article  Google Scholar 

  9. 9.

    Pyrzynska K (2002) Microchimica Acta 140:55–62

    CAS  Article  Google Scholar 

  10. 10.

    Roberge MT, Borgerding AJ, Finley JW (2003) J Agric Food Chem 51:4191–4197

    CAS  Article  Google Scholar 

  11. 11.

    Palacios O, Lobinski R (2007) Talanta 71:1813–1816

    CAS  Article  Google Scholar 

  12. 12.

    Mazej D, Falnoga I, Veber M, Stibilj V (2006) Talanta 68:558–568

    CAS  Article  Google Scholar 

  13. 13.

    Smrkolj P, Osvald M, Osvald J, Stibilj V (2007) Eur Food Res Technol 225:233–237

    CAS  Article  Google Scholar 

  14. 14.

    Polatajko A, Jakubowski N, Szpunar J (2006) J Anal At Spectrom 21:639–654

    CAS  Article  Google Scholar 

  15. 15.

    Pedrero Z, Madrid Y (2009) Anal Chim Acta 634:135–152. doi:10.1016/j.aca.2008.12.026

    CAS  Article  Google Scholar 

  16. 16.

    Naczk M, Shahidi F (2004) J Chromatogr 1054:95–111

    CAS  Google Scholar 

  17. 17.

    Naczk M, Shahidi F (2006) J Pharm Biomed Anal 41:1523–1542

    CAS  Article  Google Scholar 

  18. 18.

    Luthar Z (1992) Fagopyrum 12:36–42

    Google Scholar 

  19. 19.

    Salunkhe DK, Chavan JK, Kadam SS (1989) Dietary tannins: consequences and remedies. CRC, Boca Raton

  20. 20.

    Steadman KJ, Burgoon MS, Lewis BA, Edwardson SE, Obendorf RL (2001) J Sci Food Agric 81:1094–1100

    CAS  Article  Google Scholar 

  21. 21.

    Luthar Z, Kreft I (1999) Fagopyrum 16:61–65

    Google Scholar 

  22. 22.

    Kreft S, Knapp M, Kreft I (1999) J Agric Food Chem 47:4649–4652

    CAS  Article  Google Scholar 

  23. 23.

    Holasova M, Smrcinova FH, Orsak M, Lachman J, Vavreinova S (2002) Food Res Int 35:207–211

    CAS  Article  Google Scholar 

  24. 24.

    Fabjan N, Rode J, Košir IJ, Wang Z, Zhang Z, Kreft I (2003) J Agric Food Chem 51:6452–6455

    CAS  Article  Google Scholar 

  25. 25.

    Kim SJ, Zaidul ISM, Suzuki T, Mukasa Y, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H (2008) Food Chem 110:814–820

    CAS  Article  Google Scholar 

  26. 26.

    Eggum BO, Kreft I, Javornik B (1981) Qual Plant Plant Foods Hum Nutr 30:175–179

    Article  Google Scholar 

  27. 27.

    Vogrinčič M, Cuderman P, Kreft I, Stibilj V (2007) Analytical Sciences 25:1357–1363

    Google Scholar 

  28. 28.

    Cuderman P, Ožbolt L, Kreft I, Stibilj V (2009) Food Chemistry (submitted for publication)

  29. 29.

    Cuderman P, Kreft I, Germ M, Kovačevič M, Stibilj V (2008) J Agric Food Chem 56:9114–9120

    CAS  Article  Google Scholar 

  30. 30.

    Smrkolj P, Stibilj V, Kreft I, Kapolna E (2005) Analytical Sciences 21:1501–1504

    CAS  Article  Google Scholar 

  31. 31.

    Rayman MP (2000) Lancet 356:233–241

    CAS  Article  Google Scholar 

  32. 32.

    Ellis DR, Salt DE (2003) Curr Opin Plant Biol 6:273–279

    CAS  Article  Google Scholar 

  33. 33.

    Smrkolj P, Stibilj V (2004) Anal Chim Acta 512:11–17

    CAS  Article  Google Scholar 

  34. 34.

    Kreft S, Štrukelj B, Gaberščik A, Kreft I (2002) J Exp Bot 53:1801–1804

    CAS  Article  Google Scholar 

  35. 35.

    Kitaguchi T, Ogra Y, Iwashita Y, Suzuki TK (2008) Eur Food Res Technol 227:1455–1460

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Slovenian Research Agency through the programme P1-0143, contract 1000-05-310030 and project J7-9805. The authors would like to thank Prof. Ivan Kreft for donating the buckwheat seeds and Miss Maja Vogričič for milling them.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vekoslava Stibilj.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuderman, P., Stibilj, V. Stability of Se species in plant extracts rich in phenolic substances. Anal Bioanal Chem 396, 1433–1439 (2010). https://doi.org/10.1007/s00216-009-3324-5

Download citation

Keywords

  • Se species
  • Phenolic substances
  • Stability
  • Buckwheat
  • HPLC-ICP-MS
  • Trace elements
  • Quality assurance/control
  • Biological samples