Skip to main content

Advertisement

Log in

Degradation kinetics of the Alternaria mycotoxin tenuazonic acid in aqueous solutions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The degradation kinetics of the Alternaria mycotoxin tenuazonic acid (l-TA) in aqueous buffer were studied over a period of 4 months at different pH levels (3.5 and 7.0) and temperatures (4, 25 and 40 °C). l-TA and its degradation products were quantified by newly developed high-performance liquid chromatography methods with UV or electrospray multistage mass spectrometry detection. At pH 3.5, significant degradation occurred at 25 and 40 °C, the respective l-TA half-lives being 73.8 ± 0.4 and 14.0 ± 0.1 days. Two degradation processes, epimerization and hydrolysis, were evaluated kinetically. The hydrolytically formed iso-deacetyl TA (iso-DTA, epimeric mixture) was found to be the stable end product of l-TA degradation under the conditions of this study. This indicates that iso-DTA as well as the l-TA epimer u-TA are formed in aqueous beverage matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Iwasaki S, Muro H, Nozoe S, Okuda S, Sato Z (1972) Tetrahedron Lett 1:13–16

    Article  Google Scholar 

  2. Umetsu N, Tamari K, Kaji J (1972) Agric Biol Chem 36:859–866

    CAS  Google Scholar 

  3. Umetsu N, Muramats T, Honda H, Tamari K (1974) Agric Biol Chem 38:791–799

    CAS  Google Scholar 

  4. Steyn PS, Rabie CJ (1976) Phytochemistry 15:1977–1979

    Article  CAS  Google Scholar 

  5. Stickings C, Townsend RJ (1961) Biochem J 78:412–418

    CAS  Google Scholar 

  6. Gatenbeck S, Sieranki J (1973) Acta Chem Scand 27:1825–1827

    Article  CAS  Google Scholar 

  7. Weidenbörner M (2001) Encyclopedia of Food Mycotoxins. Springer, Berlin

    Google Scholar 

  8. Carrasco L, Vazquez D (1973) Biochim Biophys Acta 319:209–215

    CAS  Google Scholar 

  9. Yekeler H, Bitmis K, Ozcelik N, Doymaz MZ, Calta M (2001) Toxicol Pathol 29:492–497

    Article  CAS  Google Scholar 

  10. Lurie A, Katz J, Ludwin SK, Seftel HC, Metz J (1969) Br Med J 4:146–148

    Article  CAS  Google Scholar 

  11. Royles BJL (1995) Chem Rev 95:1981–2001

    Article  CAS  Google Scholar 

  12. Schobert R, Schlenk A (2008) Bioorg Med Chem 16:4203–4221

    Article  CAS  Google Scholar 

  13. Henning HG, Gelbin A (1993) Adv Heterocycl Chem 57:139–185

    Article  CAS  Google Scholar 

  14. Scott PM (2001) J AOAC Int 84:1809–1817

    CAS  Google Scholar 

  15. Ostry V (2008) World Mycotoxin J 1:175–188

    Article  CAS  Google Scholar 

  16. Shephard GS, Thiel PG, Sydenham EW, Vleggaar R, Marasas WFO (1991) J Chromatogr 566:195–205

    Article  CAS  Google Scholar 

  17. Stickings CE (1959) Biochem J 72:332–340

    CAS  Google Scholar 

  18. Lebrun MH, Nicolas L, Boutar M, Gaudemer F, Ranomenjanahary S, Gaudemer A (1988) Phytochemistry 27:77–84

    Article  CAS  Google Scholar 

  19. Combina M, Dalcero AM, Torres A (1998) Mycotoxin Res 14:54–59

    Article  CAS  Google Scholar 

  20. da Motta S, Soares LMV (2001) Food Addit Contam 18:630–634

    CAS  Google Scholar 

  21. Stack ME, Mislivec PB, Roach JAG, Pohland AE (1985) J AOAC Int 68:640–642

    CAS  Google Scholar 

  22. Mislivec PB, Bruce VR, Stack ME, Bandler R (1987) J Food Prot 50:38–41

    CAS  Google Scholar 

  23. Scott PM, Kanhere SR (1980) J AOAC Int 63:612–621

    CAS  Google Scholar 

  24. da Motta S, Soares LMV (2000) Food Chem 71:111–116

    Article  Google Scholar 

  25. Solfrizzo M, De Girolamo A, Vitti C, Visconti A, van den Bulk R (2004) J AOAC Int 87:101–106

    CAS  Google Scholar 

  26. Siegel D, Rasenko T, Koch M, Nehls I (2009) J Chromatogr A 1216:4582–4588

    Article  CAS  Google Scholar 

  27. Aresta A, Cioffi N, Palmisano F, Zambonin CG (2003) J Agric Food Chem 51:5232–5237

    Article  CAS  Google Scholar 

  28. Freire FDO, Kozakiewicz Z, Paterson RRM (2000) Mycopathologia 149:13–19

    Article  CAS  Google Scholar 

  29. Chulze SN, Torres AM, Dalcero AM, Etcheverry MG, Ramirez ML, Farnochi MC (1995) J Food Prot 58:1133–1135

    CAS  Google Scholar 

  30. Harvan DJ, Pero RW (1974) J Chromatogr 101:222–224

    Article  CAS  Google Scholar 

  31. Scott PM, Weber D, Kanhere SR (1997) J Chromatogr A 765:255–263

    Article  CAS  Google Scholar 

  32. Fabrega A, Agut M, Calvo MA (2002) J Food Sci 67:802–806

    Article  CAS  Google Scholar 

  33. Lebrun MH, Gaudemer F, Boutar M, Nicolas L, Gaudemer A (1989) J Chromatogr 464:307–322

    Article  CAS  Google Scholar 

  34. McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology (the “Gold Book”), 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  35. Siegel D, Koch M, Emmerling F, Nehls I (2009) Acta Cryst E65:o1201–o1201

    CAS  Google Scholar 

  36. Siegel D, Merkel S, Koch M, Emmerling F, Nehls I (2009) Acta Cryst E65:o988–o989

    CAS  Google Scholar 

  37. Skrabal PM (2008) Spektroskopie. UTB, Stuttgart

    Google Scholar 

  38. Forsen S, Merenyi F, Nilsson M (1967) Acta Chem Scand 21:620–624

    Article  CAS  Google Scholar 

  39. Steyn PS, Wessels PL (1978) Tetrahedron Lett 4707–4710

  40. Nolte MJ, Steyn PS, Wessels PL (1980) J Chem Soc—Perkin Trans 1:1057–1065

    Article  Google Scholar 

  41. Yamaguchi T, Saito K, Tsujimoto T, Yuki H (1976) J Heterocycl Chem 13:533–537

    Article  CAS  Google Scholar 

  42. Yamaguchi T, Saito K, Tsujimoto T, Yuki H (1976) Bull Chem Soc Jpn 49:1161–1162

    Article  CAS  Google Scholar 

  43. Forsen S, Nilsson M (1964) Acta Chem Scand 18:513–520

    Article  CAS  Google Scholar 

  44. Skylaris CK, Igglessi-Markopoulou O, Detsi A, Markopoulos J (2003) Chem Phys 293:355–363

    Article  CAS  Google Scholar 

  45. Damoglou AP, Campbell DS (1986) Lett Appl Microbiol 2:9–11

    Google Scholar 

  46. Anand JC, Leisram MS (1962) J Sci Ind Res C 21:287–289

    Google Scholar 

  47. Burdurlu HS, Koca N, Karadeniz F (2006) J Food Eng 74:211–216

    Article  CAS  Google Scholar 

  48. Connors KA (1990) Chemical kinetics. VCH, New York

    Google Scholar 

  49. Kennon L (1964) J Pharm Sci 53:815–818

    Article  CAS  Google Scholar 

  50. Connors KA, Amidon GL, Stella VJ (1986) Chemical stability of pharmaceuticals. Wiley Interscience, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Christian Piechotta, Robert Rothe and Sebastian Schmidt (all BAM, Berlin) for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Siegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, D., Merkel, S., Bremser, W. et al. Degradation kinetics of the Alternaria mycotoxin tenuazonic acid in aqueous solutions. Anal Bioanal Chem 397, 453–462 (2010). https://doi.org/10.1007/s00216-009-3288-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3288-5

Keywords