Skip to main content

Advertisement

Log in

Development and validation of a simultaneous extraction procedure for HPLC-MS quantification of daptomycin, amikacin, gentamicin, and rifampicin in human plasma

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simultaneous extraction method to measure daptomycin, amikacin, gentamicin, and rifampicin in human plasma, by high-performance liquid chromatography, was developed and validated. The method involved a rapid sample preparation by protein precipitation with acetonitrile followed by direct injection into a high-performance liquid chromatography system coupled with mass detection. Drug retention times were 10.00 ± 0.25, 2.00 ± 0.25, 3.50 ± 0.25, 11.50 ± 0.25, and 12.50 ± 0.25 min for daptomycin, amikacin, gentamicin, rifampicin, and quinoxaline, respectively. Good linearity (mean r 2 = 0.998) was obtained for all drugs quantified over the range of clinically relevant concentrations in human plasma and the use of the internal standard quinoxaline improves accuracy (RSD% <14.9%) and intra-day (RSD% <11.56) and inter-day (RSD% <12.10) precision for the analytical procedure. The limits of quantification for daptomycin, amikacin, gentamicin, and rifampicin were 1.56, 2.34, 0.63, 0.63 μg/ml, respectively. Moreover, the addition of ion pair trifluoroacetic acid in the sample allowed the majority of gentamicin and amikacin separation. A rapid, specific, sensitive, accurate, and reproducible HPLC method was developed and validated to measure daptomycin, amikacin, gentamicin, and rifampicin in human plasma. This method is suitable for clinical pharmacokinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wiedemann B (2006) Test results: characterising the antimicrobial activity of daptomycin. Clin Microbiol Infect 6

  2. Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544

    Article  CAS  Google Scholar 

  3. Tedesco KL, Rybak MJ (2004) Daptomycin. Pharmacotherapy 24:41–57

    Article  CAS  Google Scholar 

  4. Rybak MJ, Hershberger E, Moldovan T, Grucz RG (2000) In vitro activities of daptomycin, vancomycin, linezolid, and quinupristin–dalfopristin against Staphylococci and Enterococci, including vancomycin-intermediate and -resistant strains. Antimicrob Agents Chemother 44:1062–1066

    Article  CAS  Google Scholar 

  5. Sader HS, Streit JM, Fritsche TR, Jones RN (2004) Antimicrobial activity of daptomycin against multidrug-resistant Gram-positive strains collected worldwide. Diagn Microbiol Infect Dis 50:201–204

    Article  CAS  Google Scholar 

  6. Streit JM, Jones RN, Sader HS (2004) Daptomycin activity and spectrum: a worldwide sample of 6737 clinical Gram-positive organisms. J Antimicrob Chemother 53:669–674

    Article  CAS  Google Scholar 

  7. Credito K, Lin G, Appelbaum PC (2007) Activity of daptomycin alone and in combination with rifampin and gentamicin against Staphylococcus aureus assessed by time-kill methodology. Antimicrob Agents Chemother 51:1504–1507

    Article  CAS  Google Scholar 

  8. Carrier D, Bou Khalil M, Kealey A (1998) Modulation of phospholipase A2 activity by aminoglycosides and daptomycin: a Fourier transform infrared spectroscopic study. Biochemistry 37:7589–7597

    Article  CAS  Google Scholar 

  9. Pankey G, Ashcraft D, Patel N (2005) In vitro synergy of daptomycin plus rifampin against Enterococcus faecium resistant to both linezolid and vancomycin. Antimicrob Agents Chemother 49:5166–5168

    Article  CAS  Google Scholar 

  10. Dvorchik BH, Brazier D, DeBruin MF, Arbeit RD (2003) Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother 47:1318–1323

    Article  CAS  Google Scholar 

  11. Martens-Lobenhoffer J, Kielstein JT, Oye C, Bode-Boger SM (2008) Validated high performance liquid chromatography-UV detection method for the determination of daptomycin in human plasma. J Chromatogr 875:546–550

    Article  CAS  Google Scholar 

  12. Tobin CM, Darville JM, Lovering AM, Macgowan AP (2008) An HPLC assay for daptomycin in serum. J Antimicrob Chemother 62:1462–1463

    Article  CAS  Google Scholar 

  13. Rose WE, Rybak MJ, Kaatz GW (2007) Evaluation of daptomycin treatment of staphylococcus aureus bacterial endocarditis: an in vitro and in vivo simulation using historical and current dosing strategies. J Antimicrob Chemother 60:334–340

    Article  CAS  Google Scholar 

  14. Schaad HJ, Bento M, Lew DP, Vaudaux P (2006) Evaluation of high-dose daptomycin for therapy of experimental Staphylococcus aureus foreign body infection. BMC Infect Dis 6:74

    Article  Google Scholar 

  15. Papp EA, Knupp CA, Barbhaiya RH (1992) High-performance liquid chromatographic assays for the quantification of amikacin in human plasma and urine. J Chromatogr 574:93–99

    Article  CAS  Google Scholar 

  16. Nicoli S, Santi P (2006) Assay of amikacin in the skin by high-performance liquid chromatography. J Pharm Biomed Anal 41:994–997

    Article  CAS  Google Scholar 

  17. Serrano JM, Silva M (2006) Determination of amikacin in body fluid by high-performance liquid-chromatography with chemiluminescence detection. J Chromatogr 843:20–24

    Article  CAS  Google Scholar 

  18. Wichert B, Schreier H, Derendorf H (1991) Sensitive liquid chromatography assay for the determination of amikacin in human plasma. J Pharm Biomed Anal 9:251–254

    Article  CAS  Google Scholar 

  19. Wong LT, Beaubien AR, Pakuts AP (1982) Determination of amikacin in microlitre quantities of biological fluids by high-performance liquid chromatography using 1-fluoro-2, 4-dinitrobenzene derivatization. J Chromatogr 231:145–154

    Article  CAS  Google Scholar 

  20. Isoherranen N, Soback S (2000) Determination of gentamicins C(1), C(1a), and C(2) in plasma and urine by HPLC. Clin Chem 46:837–842

    CAS  Google Scholar 

  21. Lecaroz C, Campanero MA, Gamazo C, Blanco-Prieto MJ (2006) Determination of gentamicin in different matrices by a new sensitive high-performance liquid chromatography-mass spectrometric method. J Antimicrob Chemother 58:557–563

    Article  CAS  Google Scholar 

  22. Yusuf A, Al-Rawithi S, Raines D, Frayha H, Toonsi TA, Al-Mohsen I, A E-Y (1999) Simplified high-performance liquid chromatographic method for the determination of gentamicin sulfate in a microsample of plasma: comparison with fluorescence polarization immunoassay. Ther Drug Monit 21:647–652

    Article  CAS  Google Scholar 

  23. Allanson AL, Cotton MM, Tettey JN, Boyter AC (2007) Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: a potential method for therapeutic drug monitoring. J Pharm Biomed Anal 44:963–969

    Article  CAS  Google Scholar 

  24. Boffito M, Tija J, Reynolds HE, Hoggard PG, Bonora S, Di Perri G, Back DJ (2002) Simultaneous determination of rifampicin and efavirenz in plasma. Ther Drug Monit 24:670–674

    Article  CAS  Google Scholar 

  25. Hartkoorn RC, Khoo S, Back DJ, Tjia JF, Waitt CJ, Chaponda M et al (2007) A rapid and sensitive HPLC-MS method for the detection of plasma and cellular rifampicin. J Chromatogr 857:76–82

    Article  CAS  Google Scholar 

  26. Ziglam HM, Baldwin DR, Daniels I, Andrew JM, Finch RG (2002) Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 50:1011–1015

    Article  CAS  Google Scholar 

  27. FDA (2001) Guidance for industry: bioanalytical method validation. (http://fdagov/cder/guidance/4252fnlpdf)

  28. Taylor PJ (2005) Clin Biochem 38:667–73

    Article  Google Scholar 

  29. Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by staphylococcus aureus. N Engl J Med 355:653–665

    Article  CAS  Google Scholar 

  30. Seaton RA (2008) Daptomycin: rationale and role in the management of skin and soft tissue infections. J Antimicrob Chemother 62(Suppl 3):iii15–23

    Article  CAS  Google Scholar 

  31. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  CAS  Google Scholar 

  32. Cha R, Grucz RG Jr, Rybak MJ (2003) Daptomycin dose–effect relationship against resistant gram-positive organisms. Antimicrob Agents Chemother 47:1598–1603

    Article  CAS  Google Scholar 

  33. Safdar N, Andes D, Craig WA (2004) In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother 48:63–8

    Article  CAS  Google Scholar 

  34. Tally FP, Zeckel M, Wasilewski MM, Carini C, Berman CL, Drusano GL, Oleson FB Jr (1999) Daptomycin: a novel agent for Gram-positive infections. Expert Opin Investig Drugs 8:1223–1238

    Article  CAS  Google Scholar 

  35. Wagner CC, Steiner I, Zeitlinger M (2009) Daptomycin elimination by CVVH in vitro: evaluation of factors influencing sieving and membrane adsorption. Int J Clin Pharmacol Ther 47:178–186

    CAS  Google Scholar 

  36. Ovalles JF, del Brunetto MR, Gallignani M (2005) A new method for the analysis of amikacin using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization and high-performance liquid chromatography with UV-detection. J Pharm Biomed Anal 39:294–298

    Article  CAS  Google Scholar 

  37. Lung KR, Kassal KR, Green JS, Hovsepian PK (1998) Catalytic precolumn derivatization of amikacin. J Pharm Biomed Anal 16:905–910

    Article  CAS  Google Scholar 

  38. Gambardella P, Punziano R, Gionti M, Guadalupi C, Mancini G, Mangia A (1985) Quantitative determination and separation of analogues of aminoglycoside antibiotics by high-performance liquid chromatography. J Chromatogr 348:229–240

    Article  CAS  Google Scholar 

  39. Essers L (1984) An automated high-performance liquid chromatographic method for the determination of aminoglycosides in serum using pre-column sample clean-up and derivatization. J Chromatogr 305:345–352

    Article  CAS  Google Scholar 

  40. Benvenuto M, Benziger DP, Yankelev S, Vigliani G (2006) Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother 50:3245–3249

    Article  CAS  Google Scholar 

  41. Mohr JF 3rd, Ostrosky-Zeichner L, Wainright DJ, Parks DH, Hollenbeck TC, Ericsson CD (2008) Pharmacokinetic evaluation of single-dose intravenous daptomycin in patients with thermal burn injury. Antimicrob Agents Chemother 52:1891–1893

    Article  CAS  Google Scholar 

  42. Bartal C, Danon A, Schlaeffer F, Reisenberg K, Alkan M, Smoliakov R et al (2003) Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med 114:194–198

    Article  CAS  Google Scholar 

  43. Ruslami R, Nijland HM, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE (2007) Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother 51:2546–2551

    Article  CAS  Google Scholar 

  44. Ruslami R, Nijland H, Aarnoutse R, Alisjahbana B, Soeroto AY, Ewalds S, van Crevel R (2006) Evaluation of high- versus standard-dose rifampin in Indonesian patients with pulmonary tuberculosis. Antimicrob Agents Chemother 50:822–823

    Article  CAS  Google Scholar 

  45. van Crevel R, Alisjahbana B, de Lange WC, Borst F, Danusantoso H, van der Meer JW et al (2002) Low plasma concentrations of rifampicin in tuberculosis patients in Indonesia. Int J Tuberc Lung Dis 6:497–502

    Google Scholar 

Download references

Funding

None.

Transparency declarations

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Baietto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baietto, L., D’Avolio, A., De Rosa, F.G. et al. Development and validation of a simultaneous extraction procedure for HPLC-MS quantification of daptomycin, amikacin, gentamicin, and rifampicin in human plasma. Anal Bioanal Chem 396, 791–798 (2010). https://doi.org/10.1007/s00216-009-3263-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3263-1

Keywords

Navigation