Analytical and Bioanalytical Chemistry

, Volume 396, Issue 3, pp 1025–1035 | Cite as

Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles

  • Bo Yan
  • Zheng-Jiang Zhu
  • Oscar R. Miranda
  • Apiwat Chompoosor
  • Vincent M. Rotello
  • Richard W. Vachet
Original Paper

Abstract

Monolayer-protected gold nanoparticles (AuNPs) feature unique surface properties that enable numerous applications. Thus, there is a need for simple, rapid, and accurate methods to confirm the surface structures of these materials. Here, we describe how laser desorption/ionization mass spectrometry (LDI-MS) can be used to characterize AuNPs with neutral, positively, and negatively charged surface functional groups. LDI readily desorbs and ionizes the gold-bound ligands to produce both free thiols and disulfide ions in pure and complex samples. We also find that LDI-MS can provide a semi-quantitative measure of the ligand composition of mixed-monolayer AuNPs by monitoring mixed disulfide ions that are formed. Overall, the LDI-MS approach requires very little sample, provides an accurate measure of the surface ligands, and can be used to monitor AuNPs in complex mixtures.

Figure

LDI-MS analysis of ligand percentage on mixed monolayer AuNPs.

Keywords

Nanoparticles Laser desorption/ionization Mass spectrometry Surface ligands 

Supplementary material

216_2009_3250_MOESM1_ESM.pdf (159 kb)
ESM 1Electronic supplementary material (PDF 162 kb)

References

  1. 1.
    Templeton AC, Wuelfing WP, Murray RW (2000) Acc Chem Res 33:27–36CrossRefGoogle Scholar
  2. 2.
    Daniel MC, Astruc D (2004) Chem Rev 104:293–346CrossRefGoogle Scholar
  3. 3.
    De M, Ghosh PS, Rotello VM (2008) Adv Mater 20:4225–4241CrossRefGoogle Scholar
  4. 4.
    Boisselier E, Astruc D (2009) Chem Soc Rev 38:1759–1782CrossRefGoogle Scholar
  5. 5.
    You C-C, Chompoosor A, Rotello VM (2007) Nano Today 2:34–43CrossRefGoogle Scholar
  6. 6.
    You C-C, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UHF, Rotello VM (2007) Nat Nanotechnol 2:318–323CrossRefGoogle Scholar
  7. 7.
    Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562CrossRefGoogle Scholar
  8. 8.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun:801–802Google Scholar
  9. 9.
    Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430–433CrossRefGoogle Scholar
  10. 10.
    Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) J Am Chem Soc 130:3754–3755CrossRefGoogle Scholar
  11. 11.
    Wu ZW, Gayathri C, Gil RR, Jin RC (2009) J Am Chem Soc 131:6535–6542CrossRefGoogle Scholar
  12. 12.
    Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Langmuir 14:17–30CrossRefGoogle Scholar
  13. 13.
    Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) J Am Chem Soc 129:16209–16215CrossRefGoogle Scholar
  14. 14.
    Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi JP, Murray RW (2007) J Am Chem Soc 129:6706–6707CrossRefGoogle Scholar
  15. 15.
    Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW (2008) J Am Chem Soc 130:5940–5946CrossRefGoogle Scholar
  16. 16.
    Schaaff TG (2004) Anal Chem 76:6187–6196CrossRefGoogle Scholar
  17. 17.
    Dass A, Dubay GR, Fields-Zinna CA, Murray RW (2008) Anal Chem 80:6845–6849CrossRefGoogle Scholar
  18. 18.
    Fields-Zinna CA, Sampson JS, Crowe MC, Tracy JB, Parker JF, de Ney AM, Muddiman DC, Murray RW (2009) J Am Chem Soc 131:13844–13851CrossRefGoogle Scholar
  19. 19.
    Trevor JL, Lykke KR, Pellin MJ, Hanley L (1998) Langmuir 14:1664–1673CrossRefGoogle Scholar
  20. 20.
    Gong W, Elitzin VI, Janardhanam S, Wilkins CL, Fritsch I (2001) J Am Chem Soc 123:769–770CrossRefGoogle Scholar
  21. 21.
    Zhu Z-J, Ghosh PS, Miranda OR, Vachet RW, Rotello VM (2008) J Am Chem Soc 130:14139–14143CrossRefGoogle Scholar
  22. 22.
    Nagahori N, Nishimura S-I (2006) Chem - Eur J 12:6478–6485CrossRefGoogle Scholar
  23. 23.
    Qiu F, Jiang DW, Ding YB, Zhu J, Huang LL (2008) Angew Chem Int Ed 47:5009–5012CrossRefGoogle Scholar
  24. 24.
    Phillips RL, Miranda OR, Mortenson DE, Subramani C, Rotello VM, Bunz UHF (2009) Soft Matter 5:607–612CrossRefGoogle Scholar
  25. 25.
    Hong R, Emrick T, Rotello VM (2004) J Am Chem Soc 126:13572–13573CrossRefGoogle Scholar
  26. 26.
    De M, Rana S, Akpinar H, Miranda OR, Arivizo R, Bunz UHF, Rotello VM (2009) Nat Chem 1:461–465CrossRefGoogle Scholar
  27. 27.
    Kanaras AG, Kamounah FS, Schaumburg K, Kiely CJ, Brust M (2002) Chem Commun:2294–2295Google Scholar
  28. 28.
    Warner MG, Reed SM, Hutchison JE (2000) Chem Mater 12:3316–3320CrossRefGoogle Scholar
  29. 29.
    Woehrle GH, Brown LO, Hutchison JE (2005) J Am Chem Soc 127:2172–2183CrossRefGoogle Scholar
  30. 30.
    Harrison AG (1999) J Mass Spectrom 34:1253–1273CrossRefGoogle Scholar
  31. 31.
    Audier HE, Morton TH (1993) Org Mass Spectrom 28:1218–1224CrossRefGoogle Scholar
  32. 32.
    Bowen RD, Harrison AG, Reiner EJ (1988) J Chem Soc-Perkin Trans 2:1009–1013CrossRefGoogle Scholar
  33. 33.
    Holbrook KA, Pilling MJ, Robertson SH (1996) Unimolecular reactions. Wiley, New YorkGoogle Scholar
  34. 34.
    Chu I-H, Zhang H, Dearden DV (1993) J Am Chem Soc 115:5736–5744CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bo Yan
    • 1
  • Zheng-Jiang Zhu
    • 1
  • Oscar R. Miranda
    • 1
  • Apiwat Chompoosor
    • 1
  • Vincent M. Rotello
    • 1
  • Richard W. Vachet
    • 1
  1. 1.Department of ChemistryUniversity of MassachusettsAmherstUSA

Personalised recommendations