Skip to main content
Log in

Determination of accessible amino groups on surfaces by chemical derivatization with 3,5-bis(trifluoromethyl)phenyl isothiocyanate and XPS/NEXAFS analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The determination of amino groups on surfaces capable of binding biomolecules is important for the understanding and optimization of technologically relevant coupling processes. In this study, three different types of amino-functionalized model surfaces, amino thiolate on Au, amino siloxane on Si, and polyethylene (PE) foils and films reacted with 1,2-diaminoethane (DAE) were derivatized with 3,5-bis(trifluoromethyl)phenyl isothiocyanate. Subsequently, these samples were analyzed by chemical derivatization X-ray photoelectron spectroscopy (CD-XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The determination of amino groups by this analytical approach allows gaining insight into the availability of groups on surfaces that can actually serve as attachment sites for biomolecules in technical applications. In the case of the amino thiolate on Au, almost 90% of the expected amino groups were detected by CD-XPS. Investigation of the amino siloxane films revealed lower yields for the derivatization reaction in the order of 30%. The lowered reaction yields are thought to be due to interactions between the amino siloxane’s amino and silanol groups or the underlying substrate, making them inaccessible to the derivatization agent. The aminated PE samples are characterized by a complex surface chemistry and structure, and reaction yields of the derivatization reaction cannot be unequivocally derived. However, 1–3% of the total carbon atoms in the surface layer were found to be bound to amino groups accessible to the derivatization agent. It can be concluded that, depending on the detailed character of the investigated amino-terminated surface, the amount of amino groups accessible to CD-XPS can be substantially lower than the total amount of amino groups present at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

XPS:

X-ray photoelectron spectroscopy

CD:

Chemical derivatization

NEXAFS:

Near-edge X-ray fine structure

PE:

Polyethylene

DAE:

1,2-Diaminoethane

SAM:

Self-assembled monolayer

APS:

3-Aminopropylsiloxane

APhS:

p-Aminophenylsiloxane

BE:

Binding energy

FWHM:

Full width at half maximum

TEY:

Total energy electron yield

References

  1. Vogel BM, DeLongchamp M, Mahoney CM, Lucas LA, Fischer DA, Lin EK (2008) Appl Surf Sci 254:1789

    Article  CAS  Google Scholar 

  2. Ghasemi M, Minier M, Tatoulian M, Arefi-Khonsari F (2007) Langmuir 23:11554

    Article  CAS  Google Scholar 

  3. Goddard JM, Hotchkiss JH (2007) Prog Polym Sci 32:698

    Article  CAS  Google Scholar 

  4. Holländer A, Pippig F, Dubreuil M, Vangeneugden D (2008) Plasma Process Polym 5:345

    Article  Google Scholar 

  5. Yegen E, Lippitz A, Treu D, Unger WES (2008) Surf Interface Anal 40:176

    Article  CAS  Google Scholar 

  6. Yegen E, Zimmermann U, Unger WES, Braun T (2009) Plasma Process Polym 6:11

    Article  CAS  Google Scholar 

  7. Hollander A (2004) Surf Interface Anal 36:1023

    Article  Google Scholar 

  8. Ivanov VB, Behnisch J, Hollander A, Mehdorn F, Zimmermann H (1996) Surf Interface Anal 24:257

    Article  CAS  Google Scholar 

  9. Xing YJ, Dementev N, Borguet E (2007) Curr Opin Solid State Mater Sci 11:86

    Article  CAS  Google Scholar 

  10. Maeda H, Ishida N, Kawauchi H, Tuzimura K (1969) J Biochem 65:777

    CAS  Google Scholar 

  11. Ma O, Lavertu M, Sun J, Nguyen S, Buschmann MD, Winnik FM, Hoemann CD (2008) Carbohydr Polym 72:616

    Article  CAS  Google Scholar 

  12. Beier M, Hoheisel JD (1999) Nucleic Acids Res 27:1970

    Article  CAS  Google Scholar 

  13. Sullivan TP, Huck WTS (2003) Eur J Organic Chem 17

  14. Chechik V, Crooks RM, Stirling CJM (2000) Adv Mater 12:1161

    Article  CAS  Google Scholar 

  15. Chechik V, Stirling CJM (1997) Langmuir 13:6354

    Article  CAS  Google Scholar 

  16. Kurth DG, Bein T (1992) Angew Chem Int Ed Engl 31:336

    Article  Google Scholar 

  17. Kurth DG, Bein T (1993) Langmuir 9:2965

    Article  CAS  Google Scholar 

  18. Haller I (1978) J Am Chem Soc 100:8050

    Article  CAS  Google Scholar 

  19. Kim HJ, Lee SJ, Park SY, Jung JH, Kim JS (2008) Adv Mater 20:3229

    Article  CAS  Google Scholar 

  20. Delamarche E, Sundarababu G, Biebuyck H, Michel B, Gerber C, Sigrist H, Wolf H, Ringsdorf H, Xanthopoulos N, Mathieu HJ (1996) Langmuir 12:1997

    Article  CAS  Google Scholar 

  21. Buining PA, Humbel BM, Philipse AP, Verkleij AJ (1997) Langmuir 13:3921

    Article  CAS  Google Scholar 

  22. Wang XF, Liu XQ, Lai LF, Li SY, Weng J, Zhou ZM, Cui Q, Chen X, Cao MY, Zhang QQ (2008) Adv Funct Mater 18:1809

    Article  CAS  Google Scholar 

  23. Hook DJ, Vargo TG, Gardella JA, Litwiler KS, Bright FV (1991) Langmuir 7:142

    Article  CAS  Google Scholar 

  24. Nashat AH, Moronne M, Ferrari M (1998) Biotechnol Bioeng 60:137

    Article  CAS  Google Scholar 

  25. Biltresse S, Descamps D, Boxus T, Marchand-Brynaert J (2000) J Polym Sci A Polym Chem 38:3510

    Article  CAS  Google Scholar 

  26. Hansell DP, Hudson RF (1985) J Chem Soc Chem Commun 1405

  27. Castro EA (1999) Chem Rev 99:3505

    Article  CAS  Google Scholar 

  28. D'Ans J, Lax E (1992) Taschenbuch für Chemiker und Physiker: Band 1: Physikalisch-chemische Daten. Springer, Heidelberg

    Google Scholar 

  29. Blanco JLJ, Barria CS, Benito JM, Mellet CO, Fuentes J, Santoyo-Gonzalez F, Fernandez JMG (1999) Synthesis-Stuttgart 1907

  30. Graf N, Yegen E, Gross T, Lippitz A, Weigel W, Krakert S, Terfort A, Unger WES (2009) Surf Sci 603:2849

    Article  CAS  Google Scholar 

  31. Wilken R, Holländer A, Behnisch J (2002) Plasmas Polym 7:19

    Article  CAS  Google Scholar 

  32. Cranfill B (1978) Rev Sci Instrum 49:264

    Article  CAS  Google Scholar 

  33. Graf N, Yegen E, Lippitz A, Treu D, Wirth T, Unger WES (2008) Surf Interface Anal 40:180

    Article  CAS  Google Scholar 

  34. Pippig F, Holländer A (2007) Appl Surf Sci 253:6817

    Article  CAS  Google Scholar 

  35. Baytekin HT, Wirth T, Gross T, Treu D, Sahre M, Theisen J, Schmidt M, Unger WES (2008) Surf Interface Anal 40:358

    Article  CAS  Google Scholar 

  36. ISO (2001) ISO 15472:2001 Surface chemical analysis—X-ray photoelectron spectrometers—calibration of energy scales

  37. ISO (2004) 19318:2004 Surface chemical analysis—X-ray photoelectron spectroscopy—reporting of methods used for charge control and charge correction

  38. Beamson G, Briggs D (1992) High resolution XPS of organic polymers. Wiley, Chichester

    Google Scholar 

  39. Clark DT, Kilcast D, Musgrave WK (1971) J Chem Soc D Chem Commun 516

  40. Holländer A, Kropke S, Pippig F (2008) Surf Interface Anal 40:379

    Article  Google Scholar 

  41. Stöhr J (1992) NEXAFS spectroscopy. Springer, Heidelberg

    Google Scholar 

  42. Batson PE (1993) Phys Rev B 48:2608

    Article  CAS  Google Scholar 

  43. Ellison MD, Hamers RJ (1999) J Phys Chem B 103:6243

    Article  CAS  Google Scholar 

  44. Devouge S, Salvagnini C, Marchand-Brynaert J (2005) Bioorg Med Chem Lett 15:3252

    Article  CAS  Google Scholar 

  45. Ade H, Urquhart S (2002) In: Sham T-K (ed) Chemical applications of synchrotron radiation. World Scientific, New Jersey

    Google Scholar 

  46. Magnuson M, Guo JH, Butorin SM, Agui A, Sathe C, Nordgren J, Monkman AP (1999) J Chem Phys 111:4756

    Article  CAS  Google Scholar 

  47. Hitchcock AP, Tronc M, Modelli A (1989) J Phys Chem 93:3068

    Article  CAS  Google Scholar 

  48. Wen AT, Hitchcock AP, Werstiuk NH, Nguyen N, Leigh WJ (1990) Can J Chem 68:1967

    Article  CAS  Google Scholar 

  49. Pavlychev AA, Hallmeier KH, Hennig C, Hennig L, Szargan R (1995) Chem Phys 201:547

    Article  CAS  Google Scholar 

  50. Kim PSG, Petersen NO, Sham TK, Hu YF (2004) Chem Phys Lett 392:44

    Article  CAS  Google Scholar 

  51. Petrukhi OM, Nefedov VI, Salyn YV, Shevchen V (1974) Zh Neorg Khim 19:1418

    Google Scholar 

  52. Srinivasan V, Walton RA (1977) Inorg Chim Acta 25:L85

    Article  CAS  Google Scholar 

  53. Schulze D, Hallmeier KH, Wett D, Szargan R (2006) J Electron Spectrosc Relat Phenom 151:204

    Article  CAS  Google Scholar 

  54. Hallmeier KH, Mayer D, Szargan R (1998) J Electron Spectrosc Relat Phenom 96:245

    Article  CAS  Google Scholar 

  55. Shnidman Y, Ulman A, Eilers JE (1993) Langmuir 9:1071

    Article  CAS  Google Scholar 

  56. Petrukhi OM, Nefedov VI, Salyn YV (1974) Shevchen Vn. Zh Neorg Khim 19:1418

    Google Scholar 

  57. Pippig F, Sarghini S, Hollander A, Paulussen S, Terryn H (2009) Surf Interface Anal 41:421

    Article  CAS  Google Scholar 

  58. Wang H, Chen SF, Li LY, Jiang SY (2005) Langmuir 21:2633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Decker (BAM VI.5) for assistance with plasma treatment of PE foils. Special thanks are due to M. Mast, Dr. O. Schwartzkopf, Dr. W. Braun, and Dr. G. Reichardt for their support at BESSY II. A number of relevant NEXAFS references have been identified by using the Gas Phase Core Excitation Database provided by the Hitchcock Group, McMaster University, Hamilton, Canada, at http://unicorn.mcmaster.ca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang E. S. Unger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, N., Lippitz, A., Gross, T. et al. Determination of accessible amino groups on surfaces by chemical derivatization with 3,5-bis(trifluoromethyl)phenyl isothiocyanate and XPS/NEXAFS analysis. Anal Bioanal Chem 396, 725–738 (2010). https://doi.org/10.1007/s00216-009-3233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3233-7

Keywords

Navigation