Skip to main content

Advertisement

Log in

Immuno-PCR-based quantification of multiple phosphorylated tau-epitopes linked to Alzheimer’s disease

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 10 November 2009

Abstract

Several lines of evidence suggest that quantification of phosphorylated sites in the tau-protein (phospho-τ) might be favorable for early and specific Alzheimer’s disease diagnosis. The typical setup to quantify phosphorylated τ-epitopes relies on a sandwich ELISA with a capture antibody (Ab) recognizing τ independent of its phosphorylation status and a detector Ab binding specifically to a certain phosphorylation site. Besides Ab specificities, major challenges arise from the very low τ-concentrations in cerebrospinal fluid (CSF) ranging from 100 to 2,000 pg/ml. Based on the phosphorylation degree of a given position, which can be below 10%, the corresponding phospho-τ-level might be much lower, especially for multiphosphorylated epitopes studied here. Thus, a novel, highly sensitive, and generally applicable immunoassay is described to quantify τ-versions, which are phosphorylated at pThr212/pSer214/pThr231/pSer235, down to τ-concentrations of 2 pg/ml in CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Burns A, Iliffe S (2009) BMJ 338:b158

    Article  Google Scholar 

  2. Braak H, Braak E (1991) Acta Neuropathol 82:239–259

    Article  CAS  Google Scholar 

  3. Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G, Beyreuther K, Masters CL (1988) Neurology 38:1688–1693

    CAS  Google Scholar 

  4. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Neurology 34:939–944

    CAS  Google Scholar 

  5. Jellinger KA (2009) Acta Neuropathol 117:101–110

    Article  Google Scholar 

  6. Arai H, Morikawa Y, Higuchi M, Matsui T, Clark CM, Miura M, Machida N, Lee VM, Trojanowski JQ, Sasaki H (1997) Biochem Biophys Res Commun 236:262–264

    Article  CAS  Google Scholar 

  7. Weller RO (2001) J Pathol 194:1–3

    Article  CAS  Google Scholar 

  8. Blennow K, Hampel H (2003) Lancet Neurol 2:605–613

    Article  CAS  Google Scholar 

  9. Hampel H, Mitchell A, Blennow K, Frank RA, Brettschneider S, Weller L, Moller HJ (2004) J Neural Transm 111:247–272

    Article  CAS  Google Scholar 

  10. Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, Pirttila T (2009) Arch Neurol 66:382–389

    Article  Google Scholar 

  11. Kohnken R, Buerger K, Zinkowski R, Miller C, Kerkman D, DeBernardis J, Shen J, Moller HJ, Davies P, Hampel H (2000) Neurosci Lett 287:187–190

    Article  CAS  Google Scholar 

  12. Hampel H, Teipel SJ (2004) Dement Geriatr Cogn Disord 17:350–354

    Article  CAS  Google Scholar 

  13. Ewers M, Buerger K, Teipel SJ, Scheltens P, Schroder J, Zinkowski RP, Bouwman FH, Schonknecht P, Schoonenboom NS, Andreasen N, Wallin A, DeBernardis JF, Kerkman DJ, Heindl B, Blennow K, Hampel H (2007) Neurology 69:2205–2212

    Article  CAS  Google Scholar 

  14. Vanmechelen E, Van Kerschaver E, Blennow K, De Deyn PP, Galasko D, Parnetti L, Sindic CJM, Arai H, Riemenschneider M, Hampel H, Pottel H, Valgaeren A, Hulstaert F, Vanderstichele H (2001) Alzheimer’s disease: advances in etiology, pathogenesis and therapeutics. Wiley, Chichester

    Google Scholar 

  15. Ishiguro K, Ohno H, Arai H, Yamaguchi H, Urakami K, Park JM, Sato K, Kohno H, Imahori K (1999) Neurosci Lett 270:91–94

    Article  CAS  Google Scholar 

  16. Arai H, Ishiguro K, Ohno H, Moriyama M, Itoh N, Okamura N, Matsui T, Morikawa Y, Horikawa E, Kohno H, Sasaki H, Imahori K (2000) Exp Neurol 166:201–203

    Article  CAS  Google Scholar 

  17. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) J Neural Transm 112:813–838

    Article  CAS  Google Scholar 

  18. Singer D, Lehmann J, Hanisch K, Hartig W, Hoffmann R (2006) Biochem Biophys Res Commun 346:819–828

    Article  CAS  Google Scholar 

  19. Hartig W, Lehmann J, Stieler J, Singer D, Grosche J, Arendt T, Hoffmann R (2006) NeuroReport 17:869–874

    Article  Google Scholar 

  20. Singer D, Herth N, Kuhlmann J, Holland-Nell K, Beck-Sickinger AG, Hoffmann R (2008) Biochem Biophys Res Commun 367:318–322

    Article  CAS  Google Scholar 

  21. Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K, Andreasen N, Hofmann-Kiefer K, DeBernardis J, Kerkman D, McCulloch C, Kohnken R, Padberg F, Pirttila T, Schapiro MB, Rapoport SI, Moller HJ, Davies P, Hampel H (2002) Arch Neurol 59:1267–1272

    Article  Google Scholar 

Download references

Acknowledgement

We thank Carolyn Zimmermann for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hoffmann.

Additional information

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) (grant 2222/3-1), the European Fund for Regional Structure Development (EFRE), and the “Industrie-und Handelskammer zu Leipzig.”

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-009-3259-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, D., Soininen, H., Alafuzoff, I. et al. Immuno-PCR-based quantification of multiple phosphorylated tau-epitopes linked to Alzheimer’s disease. Anal Bioanal Chem 395, 2263–2267 (2009). https://doi.org/10.1007/s00216-009-3208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3208-8

Keywords

Navigation