Analytical and Bioanalytical Chemistry

, Volume 396, Issue 6, pp 1961–1967 | Cite as

See what you eat—broad GMO screening with microarrays

  • Franz von GötzEmail author


Despite the controversy of whether genetically modified organisms (GMOs) are beneficial or harmful for humans, animals, and/or ecosystems, the number of cultivated GMOs is increasing every year. Many countries and federations have implemented safety and surveillance systems for GMOs. Potent testing technologies need to be developed and implemented to monitor the increasing number of GMOs. First, these GMO tests need to be comprehensive, i.e., should detect all, or at least the most important, GMOs on the market. This type of GMO screening requires a high degree of parallel tests or multiplexing. To date, DNA microarrays have the highest number of multiplexing capabilities when nucleic acids are analyzed. This trend article focuses on the evolution of DNA microarrays for GMO testing. Over the last 7 years, combinations of multiplex PCR detection and microarray detection have been developed to qualitatively assess the presence of GMOs. One example is the commercially available DualChip® GMO (Eppendorf, Germany;, which is the only GMO screening system successfully validated in a multicenter study. With use of innovative amplification techniques, promising steps have recently been taken to make GMO detection with microarrays quantitative.


EU-validated GMO screening microarray


Genetically modified organism Microarray Genetically modified organism screening Multiplex Food and feed testing Validation 


  1. 1.
    GMO Compass (2009) Rising trend: genetically modified crops worldwide on 125 million hectares.
  2. 2.
    GMO Compass (2009) Germany: Minister Aigner bans MON810 Bt maize.
  3. 3.
    Ramessar K, Capell T, Twyman RM, Quemada H, Christou P (2008) Nat Biotechnol 26:975–78CrossRefGoogle Scholar
  4. 4.
    European Parliament and Council (2003) Off J Eur Communities 268:1–23.
  5. 5.
    US Department of Agriculture (2008) Audit report: controls over importation of transgenic plants and animals. Report no. 50601-17-Te. US Department of Agriculture, Washington.
  6. 6.
    Elenis DS, Kalogianni DP, Glynou K, Ioannou PC, Christopoulos TK (2008) Anal Bioanal Chem 392:347–354CrossRefGoogle Scholar
  7. 7.
    Michelini E, Simoni P, Cevenini L, Mezzanotte L, Roda A (2008) Anal Bioanal Chem 392:355–67CrossRefGoogle Scholar
  8. 8.
    Marmiroli N, Maestri E, Gulli M, Malcevschi A, Peano C, Bordoni R, De Bellis G (2008) Anal Bioanal Chem 392:369–384CrossRefGoogle Scholar
  9. 9.
    AGBIOS (1999–2009) GM database. Accessed 31 May 2009
  10. 10.
    GMO Compass (2009) GMO database. Genetically modified food and feed: authorization in the EU. Accessed 31 May 2009
  11. 11.
    Biosafety Clearing-House (2001–2009) Search for LMOs, genes or organisms. Accessed 31 May 2009
  12. 12.
    Blais BW, Phillippe LM, Vary N (2002) Biotechnol Lett 17:1407–1411CrossRefGoogle Scholar
  13. 13.
    Nagarajan MM, De Boer SH (2003) Plant Mol Biol Rep 21:259–279CrossRefGoogle Scholar
  14. 14.
    Germini A, Rossi S, Zanetti A, Corradini R, Fogher C, Marchelli R (2005) J Agric Food Chem 53:3958–3962CrossRefGoogle Scholar
  15. 15.
    Bordoni R, Germini A, Mezzelani A, Marchelli R, De Bellis G (2005) J Agric Food Chem 53:912–918CrossRefGoogle Scholar
  16. 16.
    Chen T, Sanjaya, Prasad V, Lee C, Lin K, Chiueh L, Chan M (2006) 2006. Bot Stud 47:1–11Google Scholar
  17. 17.
    Leimanis S, Hernández M, Fernández S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomènech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139CrossRefGoogle Scholar
  18. 18.
    Tengs T, Kristoffersen AB, Berdal KG, Thorstensen T, Butenko MA, Nesvold H, Holst-Jensen A (2007) BMC Biotechnol 18:91CrossRefGoogle Scholar
  19. 19.
    Xu J, Miao H, Wu H, Huang W, Tang R, Qiu M, Wen J, Zhu S, Li Y (2006) Biosens Bioelectron 15:71–77CrossRefGoogle Scholar
  20. 20.
    Xu J, Zhu S, Miao H, Huang W, Qiu M, Huang Y, Fu X, Li Y (2007) J Agric Food Chem 11:5575–5579CrossRefGoogle Scholar
  21. 21.
    Zhou PP, Zhang JZ, You YH, Wu YN (2008) Biomed Environ Sci 21:53–62CrossRefGoogle Scholar
  22. 22.
    Hamels S, Glouden T, Gillard K, Mazzara M, Debode F, Foti N, Sneyers M, Nuez TE, Pla M, Berben G, Moens W, Bertheau Y, Audéon C, Van den Eede G, Remacle J (2009) Eur Food Res Technol 228:531–541CrossRefGoogle Scholar
  23. 23.
    Leimanis S, Hamels S, Nazé F, Mbella GM, Sneyers M, Hochegger R, Broll H, Roth L, Dallmann K, Micsinai A, La Paz JL, Pla M, Brünen-Nieweler C, Papazova N, Taverniers I, Hess N, Kirschneit B, Bertheau Y, Audeon C, Laval V, Busch U, Pecoraro S, Neumann K, Rösel S, van Dijk J, Kok E, Bellocchi G, Foti N, Mazzara M, Moens W, Remacle J, Van Den Eede G (2008) Eur Food Res Technol 227:1438–2377CrossRefGoogle Scholar
  24. 24.
    Bellocchi G, Bertholet V, Hamels S, Moens W, Remacle J, Van den Eede G (2009) Transgenic Res (in press)Google Scholar
  25. 25.
    Hamels S, Leimanis S, Mazzara M, Bellochi G, Foti N, Moens W, Remacle J, Van den Eede G (2007) Microarray method for the screening of EU approved GMOs by identification of their genetic elements. JRC Scientific and technical reports.
  26. 26.
    Rudi K, Rud I, Holck A (2003) Nucleic Acids Res 31:e62CrossRefGoogle Scholar
  27. 27.
    Morisset D, Dobnik D, Hamels S, Zel J, Gruden K (2008) Nucleic Acids Res 36:e118CrossRefGoogle Scholar
  28. 28.
    Prins TW, van Dijk JP, Beenen HG, Van Hoef AA, Voorhuijzen MM, Schoen CD, Aarts HJ, Kok EJ (2008) BMC Genomics 4:584CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Shendure J, Ji H (2008) Nat Biotechnol 26:1135–1145CrossRefGoogle Scholar
  31. 31.
    Morisset D, Demsar T, Gruden K, Vojvoda J, Stebih D, Zel J (2009) Nat Biotechnol 27:700–701CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Eppendorf Biochip Systems GmbHHamburgGermany

Personalised recommendations