Advertisement

Analytical and Bioanalytical Chemistry

, Volume 396, Issue 6, pp 2125–2133 | Cite as

Characterization of polyadenylated cryIA(b) transcripts in maize MON810 commercial varieties

  • José Luis La Paz
  • Carlos Vicient
  • Pere Puigdomènech
  • Maria PlaEmail author
Original Paper

Abstract

The Zea mays L. event MON810 is one of the major commercialized genetically modified crops. The inserted expression cassette has a 3′ truncation partially affecting the cryIA(b) coding sequence, resulting in the lack of the NOS terminator, with transcription of the transgene reported to read-through 3′-past the truncation site. Here, we demonstrate that the cryIA(b) transgene gives rise to a variety of polyadenylated transcripts of different sizes that extend to around 1 kbp downstream the truncation site. A Stop codon at position +7 downstream the truncation site indicates the production of a transgenic protein with two additional amino acids; which is compatible with the reported size of the CryIA(b) protein in MON810. There is no evidence of the existence of other translated products. Several main 3′ transcription termination regions were detected close to the truncation site and in the transgene 3′ flanking sequence. Next to these main termination sites, we identified some sequence motifs that could potentially act as 3′-end-processing elements and drive termination of the transgene transcripts. The MON810 transgene has been introduced into different commercial varieties through breeding programs. Here, we demonstrate that there are no significant differences among the levels of transgene mRNA accumulation, major transcript sizes and 3′ termini profiles comparing a number of MON810 commercial varieties grown under similar environmental conditions. Commercial varieties of this event appear to be stable in terms of transgene expression.

Figure

Similar cryIA(b) RACE 3’-PCR profiles were obtained with mRNA from six MON810 commercial varieties: superposition of electropherograms and schematic representation of the length of transgene mRNA molecules.

Keywords

GMO (genetically modified organism) MON810 maize Transgene mRNA 3′-end-processing site Polyadenylated mRNA 

Abbreviations

CaMV

Cauliflower mosaic virus

BAC

Bacterial artificial chromosome

NOS

Nopaline synthetase

GMO

Genetically modified organism

mRNA

Messenger ribonucleic acid

CRM

Certified reference material

IRMM

Institute for Reference Materials and Measurements

Real-time RT-PCR

Reverse transcription coupled to real-time PCR

PCR

Polymerase chain reaction

cDNA

Complementary deoxyribonucleic acid

RACE 3′-PCR

Rapid amplification of cDNA ends

Notes

Acknowledgments

This work was financially supported by the EC FP6 project “Co-Extra” and by the Spanish MEC project with ref. AGL2007-65903/AGR.

References

  1. 1.
    Hernández M, Pla M, Esteve T, Prat S, Puigdomènech P, Ferrando A (2003) Transgenic Res 12(2):179–189CrossRefGoogle Scholar
  2. 2.
    Rosati A, Bogani P, Santarlasci A, Buiatti M (2008) Plant Mol Biol 67:271–281CrossRefGoogle Scholar
  3. 3.
    Rasmussen R (2001) In: Meuer S, Wittwer C, Nakagawara K (eds) Rapid Cycle real-time PCR, methods and applications. Springer, Berlin,GGoogle Scholar
  4. 4.
    Arumuganathan K, Earle ED (1991) Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  5. 5.
    Sambrook J, MacCallum P, Russell D (2000) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory PressGoogle Scholar
  6. 6.
    Bubner B, Gase K, Baldwin IT (2004) BMC Biotechnol 4:14–20CrossRefGoogle Scholar
  7. 7.
    Rothnie HM (1996) 32(1-2):43-61Google Scholar
  8. 8.
    Li Q, Hunt G (1997) Plant Physiol 115:321–325CrossRefGoogle Scholar
  9. 9.
    Kohli A, Twyman R, Abranches R, Wegel E, Stoger E, Christou P (2003) Plant Mol Biol 52:247–258CrossRefGoogle Scholar
  10. 10.
    Zhang J, Cai L, Cheng J, Mao H, Fan X, Meng Z, Chan KM, Zhang H, Qi J, Ji L, Hong Y (2008) Transgenic Res 17(2):293–306CrossRefGoogle Scholar
  11. 11.
    Windels P, Taverniers I, Depicker A, Van Bockstaele E, De Loose M (2001) Eur Food Res Technol 213:107–111CrossRefGoogle Scholar
  12. 12.
    Rang A, Linke B, Jansen B (2005) Eur Food Res Technol 220:438–443CrossRefGoogle Scholar
  13. 13.
    Kashkush K, Feldman M, Levy AA (2003) Nat Genet 33:102–106CrossRefGoogle Scholar
  14. 14.
    Kashkush K, Khasdan V (2007) Genetics 177:1975–1985CrossRefGoogle Scholar
  15. 15.
    Hernández-Pinzón I, de Jesús E, Santiago N, Casacuberta JM (2009) J Mol Evol in press. doi: 10.1007/s00239-009-9204-y
  16. 16.
    Vitte C, Bennetzen JL (2006) Proc Natl Acad Sci USA 103(47):17638–17643CrossRefGoogle Scholar
  17. 17.
    Hellmann H, Estelle M (2002) Science 297(5582):793–797CrossRefGoogle Scholar
  18. 18.
    Kee Y, Huibregtse JM (2007) Biochem Biophys Res Commun 354(2):329–333CrossRefGoogle Scholar
  19. 19.
    Downes BP, Stupar RM, Gingerich DJ, Vierstra RD (2003) The Plant Journal 35(6):729–742CrossRefGoogle Scholar
  20. 20.
    Hunt AG (2008) Curr Top Microbiol Immunol 326:151–177CrossRefGoogle Scholar
  21. 21.
    Edmonds M (2002) Prog Nucleic Acid Res Mol Biol 71:285–389CrossRefGoogle Scholar
  22. 22.
    Loke JC, Stahlberg EA, Strenski DG, Haas BJ, Wood PC, Li QQ (2005) Plant Physiol 138(3):1457–1468CrossRefGoogle Scholar
  23. 23.
    Dong H, Deng Y, Chen J, Wang S, Peng S, Dai C, Fang Y, Shao J, Lou Y, Li D (2007) Gene 389:107–113CrossRefGoogle Scholar
  24. 24.
    Ji G, Zheng J, Shen Y, Wu X, Jiang R, Lin Y, Loke J, Davis K, Reese G, Li Q (2007) BMC Bioinformatics 8:43CrossRefGoogle Scholar
  25. 25.
    Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ (2008) Nucleic Acids Res 36(9):3450–3161CrossRefGoogle Scholar
  26. 26.
    Nguyen HT, Jehle JA (2007) J Plant Dis Protect 114:820–887Google Scholar
  27. 27.
    Coll A, Nadal A, Palaudelmàs M, Messeguer J, Melé E, Puigdomènech P, Pla M (2008) Plant Mol Biol 68:105–117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • José Luis La Paz
    • 1
  • Carlos Vicient
    • 1
  • Pere Puigdomènech
    • 1
  • Maria Pla
    • 2
    Email author
  1. 1.Departament Genètica MolecularCentre de Recerca en Agrigenòmica, CSIC-IRTA-UABBarcelonaSpain
  2. 2.Institut de Tecnologia AgroalimentàriaUniversitat de GironaGironaSpain

Personalised recommendations