Skip to main content
Log in

Peak assignment in multi-capillary column–ion mobility spectrometry using comparative studies with gas chromatography–mass spectrometry for VOC analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Over the past years, ion mobility spectrometry (IMS) as a well established method within the fields of military and security has gained more and more interest for biological and medical applications. This highly sensitive and rapid separation technique was crucially enhanced by a multi-capillary column (MCC), pre-separation for complex samples. In order to unambiguously identify compounds in a complex sample, like breath, by IMS, a reference database is mandatory. To obtain a first set of reference data, 16 selected volatile organic substances were examined by MCC-IMS and comparatively analyzed by the standard technique for breath research, thermal desorption–gas chromatography–mass spectrometry. Experimentally determined MCC and GC retention times of these 16 compounds were aligned and their relation was expressed in a mathematical function. Using this function, a prognosis of the GC retention time can be given very precisely according to a recorded MCC retention time and vice versa. Thus, unknown MCC-IMS peaks from biological samples can be assigned—after alignment via the estimated GC retention time—to analytes identified by GC/MS from equivalent accomplished data. One example of applying the peak assignment strategy to a real breath sample is shown in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, 2nd edn. CRC, London UK

    Google Scholar 

  2. Baumbach JI, Eiceman GA (1999) Appl Spectrosc 53:338A–355A

    Article  CAS  Google Scholar 

  3. Vautz W, Zimmermann D, Hartmann M, Baumbach JI, Nolte J, Jung J (2006) Food Addit Contam 23:1064–1073

    Article  CAS  Google Scholar 

  4. Vautz W, Baumbach JI, Jung J (2006) J Inst Brewing 112:157–164

    CAS  Google Scholar 

  5. Raatikainen O, Reinikainen V, Minkkinen P, Ritvanen T, Muje P, Pursiainen J, Hiltunen T, Hyvoenen P, von Wright A, Reinikainen S-P (2005) Anal Chim Acta 544:128–134

    Article  CAS  Google Scholar 

  6. Karpas Z, Tilman B, Gdalevsky R, Lorber A (2002) Anal Chim Acta 463:155–163

    Article  CAS  Google Scholar 

  7. Chaim W, Karpas Z, Lorber A (2003) Eur J Obstet Gynecol Reprod Biol 111:83–87

    Article  Google Scholar 

  8. Karpas Z, Chaim W, Gdalevsky R, Tilman B, Lorber A (2002) Anal Chim Acta 474:115–123

    Article  CAS  Google Scholar 

  9. Hartmann M, Zimmermann D, Nolte J (2008) In Vitro Cell Dev Biol Anim 44:458–463

    Article  Google Scholar 

  10. Buszewski B, Kesy M, Ligor T, Amann A (2007) Biomed Chromatogr 6:553–566

    Article  Google Scholar 

  11. Vautz W, Baumbach JI (2008) Int J Ion Mobil Spec 11:35–41

    Article  CAS  Google Scholar 

  12. Smith GB, Eiceman GA, Walsh MK, Critz SA, Andazola E, Ortega E, Cadena F (1997) Field Anal Chem Tech 1:213–226

    Article  CAS  Google Scholar 

  13. Snyder AP, Shoff DB, Eiceman GA, Blyth DA, Parsons JA (1991) Anal Chem 63:526–529

    Article  CAS  Google Scholar 

  14. Awan MA, Fleet I, Thomas CLP (2008) Food Chem 111:462–468

    Article  Google Scholar 

  15. Filipiak W, Sponring A, Mikoviny T, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J (2008) Cancer Cell Int 8:17

    Article  Google Scholar 

  16. Sponring A, Filipiak W, Mikoviny T, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J (2009) Anticancer Res 29:419–426

    CAS  Google Scholar 

  17. Chen X, Xu F, Wang Y, Pan Y, Lu D, Wang P, Ying K, Chen E, Zhang W (2007) Cancer 110:835–844

    Article  CAS  Google Scholar 

  18. Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) J Chromatogr A 1084:145–151

    Article  CAS  Google Scholar 

  19. Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Kloss R, Maxfield RA, Munawar MI, Pass HI, Rashid A, Rom WN, Schmitt P, Wai J (2008) Clin Chim Acta 393:76–84

    Article  CAS  Google Scholar 

  20. Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2009) Thorax 64:744–748

    Article  CAS  Google Scholar 

  21. Westhoff M, Litterst P, Freitag L, Baumbach JI (2007) J Physiol Pharmacol 58(suppl 5):739–751

    Google Scholar 

  22. Baumbach IJ (2006) Anal Bioanal Chem 384:1059–1070

    Article  CAS  Google Scholar 

  23. Vautz W, Michels A, Franzke J (2008) Anal Bioanal Chem 391:2609–2615

    Article  CAS  Google Scholar 

  24. Borsdorf H, Eiceman GA (2006) Appl Spectrosc Rev 41:323–375

    Article  CAS  Google Scholar 

  25. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) Int J Mass Spectrom 261:1–12

    Article  CAS  Google Scholar 

  26. Mukhopadhyay R (2008) Anal Chem 80:7918–7920

    Article  CAS  Google Scholar 

  27. Kwasnik M, Fuhrer K, Gonin M, Barbeau K, Fernández FM (2007) Anal Chem 79:7782–7791

    Article  CAS  Google Scholar 

  28. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) J Mass Spectrom 43:1–22

    Article  CAS  Google Scholar 

  29. Kanu AB, Hill HH Jr (2008) J Chrom A 1177:12–27

    Article  CAS  Google Scholar 

  30. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) Mod Biopharm 1:1343–1358

    Article  Google Scholar 

  31. Bader S, Urfer W, Baumbach JI (2008) Int J Ion Mobility Spectrom 11:43–49

    Article  CAS  Google Scholar 

  32. Bader S, Urfer W, Baumbach JI (2006) J Chemometr 20:128–135

    Article  CAS  Google Scholar 

  33. Cao LB, Harrington PB, Liu C (2004) Anal Chem 76:2859–2868

    Article  CAS  Google Scholar 

  34. Cao LB, Harrington PB, Harden S, McHugh VM, Thomas MA (2004) Anal Chem 76:1069–1077

    Article  CAS  Google Scholar 

  35. Eiceman GA, Wang M, Prasad S, Schmidt H, Tadjimukhamedov FK, Lavine BK, Mirjankar N (2006) Anal Chim Acta 579:1–10

    Article  CAS  Google Scholar 

  36. Bader S, Urfer W, Baumbach J (2005) Int J Ion Mobility Spectrom 8:1–4

    Google Scholar 

  37. Cao L, De Harrington P, Liu J (2005) Anal Chem 77:2575–2586

    Article  CAS  Google Scholar 

  38. Chen GX, Harrington PB (2003) Anal Chim Acta 490:59–69

    Article  CAS  Google Scholar 

  39. Harrington PdB, Rauch PJ, Cai C (2001) Anal Chem 73:3247–3256

    Article  CAS  Google Scholar 

  40. Baumbach JI (2009) J Breath Research 3:03001

    Google Scholar 

  41. Amann A, Spanel P, Smith D (2007) Mini Rev Med Chem 7:115–129

    Article  CAS  Google Scholar 

  42. Miekisch W, Schubert JK, Noeldge-Schomburg GF (2004) Clin Chim Acta 347:25–39

    Article  CAS  Google Scholar 

  43. Ligor T, Ligor M, Amann A, Ager C, Bachler M, Dzien A, Buszewski B (2008) J Breath Research 2:046006

    Article  Google Scholar 

  44. Amann A, Poupart G, Telser S, Ledochowski M, Schmid A, Mechtcheriakov S (2004) Int J Mass Spectr 239:227–233

    Article  CAS  Google Scholar 

  45. Spanel P, Smith D (2000) Rapid Commun Mass Spectrom 14:1898–1906

    Article  CAS  Google Scholar 

  46. Snyder AP, Dworzanski JP, Tripathi A, Maswadeh WM, Wick CH (2004) Anal Chem 76:6492–6499

    Article  CAS  Google Scholar 

  47. Vautz W, Bödeker B, Bader S, Baumbach JI (2008) Int J Ion Mobil Spec 11:71–76

    Article  CAS  Google Scholar 

  48. Vautz W, Bödeker B, Baumbach JI, Bader S, Westhoff M, Perl T (2009) Int J Ion Mobil Spec 12:47–57

    Article  CAS  Google Scholar 

  49. Pedersen CS, Lauritsen FR, Sysoev A, Viitanen AK, Mäkelä JM, Adamov A, Laakia J, Mauriala T, Kotiaho T (2008) J Am Soc Mass Spectrom 19(9):1361–1366

    Article  CAS  Google Scholar 

  50. Mehran M, Cooper WJ, Golkar N, Nickelsen MG, Mittlefehldt ER, Guthrie E, Jennings W (1991) J High Resolut Chrom 14:745–750

    Article  CAS  Google Scholar 

  51. Krupèik J, Repka D, Benická E, Hevesi T, Nolte J, Paschold B, Mayer H (1988) J Chrom 448:203–218

    Article  Google Scholar 

  52. Nolte J, Mayer H, Paschold B (1986) Fresenius Z Anal Chem 325:20–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Stefanie Güssgen, Mrs. Barbara Obertrifter, Mrs. Lucia Seifert, Mrs. Susanne Krois, and Dr. Wolfgang Vautz for their major contributions to experimental and laboratory work. The cooperation with Dr. Michael Westhoff and Dr. Patrick Litterst of the Lung Clinic Hemer is gratefully acknowledged. In addition, the mechanical department of the ISAS headed by Mr. Hans-Georg Krebs was essential and contributed to the results obtained.

The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen is gratefully acknowledged. The work was founded partly by the project BAMOD (Breath-gas analysis for molecular-oriented detection of minimal diseases) of the European Union (LSHC-CT-2005-019031) and the high-tech strategy funds of the Federal Republic of Germany (project Metabolit—01SF0716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Jünger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jünger, M., Bödeker, B. & Baumbach, J.I. Peak assignment in multi-capillary column–ion mobility spectrometry using comparative studies with gas chromatography–mass spectrometry for VOC analysis. Anal Bioanal Chem 396, 471–482 (2010). https://doi.org/10.1007/s00216-009-3168-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3168-z

Keywords

Navigation