Analytical and Bioanalytical Chemistry

, Volume 396, Issue 1, pp 483–493 | Cite as

Gene transcription analysis of carrot allergens by relative quantification with single and duplex reverse transcription real-time PCR

  • Jutta Zagon
  • Bärbel Jansen
  • Meike Knoppik
  • Anke Ehlers
  • Lothar W. Kroh
  • Thomas Holzhauser
  • Stefan Vieths
  • Hermann Broll
Original Paper

Abstract

Single and duplex real-time polymerase chain reaction (PCR) systems have been developed to quantify specific mRNA transcription of genes coding for the major Daucus carota allergen isoforms Dau c 1.01 and Dau c 1.02. Methods were tested with samples from the local market. Whereas the gene transcription levels for Dau c 1.01 were consistently high in all investigated samples, significant differences for the Dau c 1.02 transcription could be demonstrated in randomly collected market samples. The gene transcription level for the minor Dau c 1.02 variant is about one log below Dau c 1.01. Both formats, single or duplex real-time methods, exhibit ideal cycle threshold (CT) ranges and good reproducibility. In particular, the easily performed duplex real-time PCR system is potentially suited for the selection of hypoallergenic varieties and studying the impact of post-harvesting or environmental conditions.

Keywords

Reverse transcriptase Real-time PCR Daucus carota Allergens Dau c 1.01 Dau c 1.02 PCR Gene expression 

References

  1. 1.
    Bonds RS, Midoro-Horiuti T, Goldblum R (2008) Review—a structural basis for food allergy: the role of cross-reactivity. Curr Opin Allergy Clin Immunol Feb 8(1):82–86CrossRefGoogle Scholar
  2. 2.
    Vieths S, Scheurer S, Ballmer-Weber BK (2002) Current understanding of cross-reactivity of food allergens and pollen. Ann NY Acad Sci 964:47–68CrossRefGoogle Scholar
  3. 3.
    Stäger J, Wüthrich B, Johansson SGO (1991) Spice allergy in celery-sensitive patients. Allergy 56:475–478CrossRefGoogle Scholar
  4. 4.
    Etesamifar M, Wüthrich B (1998) Nahrungsmittelallergie bei 383 Patienten unter Berücksichtigung des oralen Allergie-Syndroms. Allergologie 21:451–457Google Scholar
  5. 5.
    Roehr CC, Edenharter G, Reimann S, Ehlers I, Worm M, Zuberbier T, Niggemann B (2004) Food allergy and non-allergic food hypersensitivity in children and adolescents. Clin Exp Allergy 34(10):1534–1541CrossRefGoogle Scholar
  6. 6.
    Munoz D, Leanizbarrutia I, Lobera T, de Corres F (1985) Anaphylaxis from contact with carrot. Contact Dermatitis 13:345–346CrossRefGoogle Scholar
  7. 7.
    Lopez M, Schwarz H, Helbling A, Lehrer S (1991) Anaphylaxis to carrot: crossreactivity of carrot specific IgE with spices from the Umbelliferae family. J Allergy Clin Immunol 87(Supp 1 Pt2):530Google Scholar
  8. 8.
    Fernández-Rivas M, González-Mancebo E, van Leeuwen WA, León F, van Ree R (2004) Anaphylaxis to raw carrot not linked to pollen allergy. Allergy 59(11):1239–1240. doi:10.1111/j.1398-9995.2004.00600.x CrossRefGoogle Scholar
  9. 9.
    Schiappoli M, Senna G, Dama A, Bonadonna P, Crivellaro M, Passalacqua G (2002) Anaphylaxis due to carrot as hidden food. Allergen Allergol Immunopathol 30(4):243–4Google Scholar
  10. 10.
    Bohle B, Zwolfer B, Heratizadeh A, Jahn-Schmid B, Antonia YD, Alter M, Keller W, Zuidmeer L, van Ree R, Werfel T, Ebner C (2006) Cooking birch pollen-related food: divergent consequences for IgE- and T cell-mediated reactivity in vitro and in vivo. J Allergy Clin Immunol 118(1):242–249CrossRefGoogle Scholar
  11. 11.
    Murdoch SR, Dempster J (2000) Allergic contact dermatitis from carrot. Contact Dermatitis 42(4):236Google Scholar
  12. 12.
    Vickers H (1941) R The carrot as a cause of dermatitis. Br J Dermatol 53:52–57CrossRefGoogle Scholar
  13. 13.
    Schenk MF, Gilissen LJWJ, Esselink GD, Smujlders MJM (2006) Seven different genes encode a diverse mixture of isoforms of Bet v I, the major birch pollen allergen. BMC Genomics 7:168. doi:http://www.biomedcentral.com/1471-2164/7/168 CrossRefGoogle Scholar
  14. 14.
    Li X, Hwang G-J, Zimmerman JL (1996) NCBI, GenBank U47087, Direct Submission (25-JAN-1996)Google Scholar
  15. 15.
    Yamamoto M, Torikai S, Oeda K (1996) NCBI, GenBank D88388, Direct Submission (14-OCT-1996)Google Scholar
  16. 16.
    Hoffmann-Sommergruber K, O’Riordain G, Ahorn H, Ebner C, Laimer Da Camara Machado M, Puhringer H, Scheiner O, Breiteneder H (1999) Molecular characterization of Dau c 1, the Bet v 1 homologeous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1. Clin Exp Allergy 29(6):840–847CrossRefGoogle Scholar
  17. 17.
    Vieths S, Wangorsch A, Ballmer-Weber BK (1996) NCBI, GenBank AF456481, Direct Submission (07-Dec-2001)Google Scholar
  18. 18.
    Livak KJ, Schmittgen TD (2001) Analysis of relativ gene expression data using real time quantitative PCR and the 2-delta delta CT method. Methods 25:402–408CrossRefGoogle Scholar
  19. 19.
    Hoffmann-Sommergruber K, Vanek-Krebitz M, Radauer C, Wen J, Ferreira F, Scheiner O, Breiteneder H (1997) Genomic characterisation of members of the Bet v 1 familiy: genes coding for allergens and pathogenesis-related proteins share intron positions. Gene 197:91–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jutta Zagon
    • 1
  • Bärbel Jansen
    • 2
  • Meike Knoppik
    • 1
  • Anke Ehlers
    • 1
  • Lothar W. Kroh
    • 3
  • Thomas Holzhauser
    • 4
  • Stefan Vieths
    • 4
  • Hermann Broll
    • 1
  1. 1.Division Food Safety-Effect-Based Analytics and ToxicokineticsFederal Institute for Risk Assessment, BfRBerlinGermany
  2. 2.Umwelt und VerbraucherschutzSenatsverwaltung für GesundheitBerlinGermany
  3. 3.Division of Foodtechnology and ChemistryTechnical University of BerlinBerlinGermany
  4. 4.Division of Allergology, Research Group “Allergen Structures”Paul-Ehrlich-InstitutLangenGermany

Personalised recommendations