Skip to main content

Advertisement

Log in

Optimization and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of nicotine, cotinine, trans-3′-hydroxycotinine and norcotinine in human oral fluid

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical procedure was developed and validated for the simultaneous identification and quantification of nicotine, cotinine, trans-3′-hydroxycotinine, and norcotinine in 0.5 mL of human oral fluid collected with the Quantisal™ oral fluid collection device. Solid phase extraction and liquid chromatography-tandem mass spectrometry with multiple reaction monitoring were utilized. Endogenous and exogenous interferences were extensively evaluated. Limits of quantification were empirically identified by decreasing analyte concentrations. Linearity was from 1 to 2,000 ng/mL for nicotine and norcotinine, 0.5 to 2,000 ng/mL for trans-3′-hydroxycotinine, and 0.2 to 2,000 ng/mL for cotinine. Correlation coefficients for calibration curves were >0.99 and analytes quantified within ±13% of target at all calibrator concentrations. Suitable analytical recovery (>91%) was achieved with extraction efficiencies >56% and matrix effects <29%. This assay will be applied to the quantification of nicotine and metabolites in oral fluid in a clinical study determining the most appropriate nicotine biomarker concentrations differentiating active, passive, and environmental nicotine exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dams R, Choo RE, Lambert WE, Jones H, Huestis MA (2007) Drug Alcohol Depend 87:258–267

    Article  CAS  Google Scholar 

  2. Smith FP, Kidwell DA (1996) Forensic Sci Int 83:179–189

    Article  CAS  Google Scholar 

  3. Speckl IM, Hallbach J, Guder WG, Meyer LV, Zilker T (1999) Clin Toxicol 37:441–445

    Article  CAS  Google Scholar 

  4. U.S. EPA. Respiratory health effects of passive smoking. U.S. Environmental Protection Agency, Office of Research and development, Office of Health and Environmental Assessment, Washington, DC, EPA/600/6-90/006F, 1992

  5. Benowitz NL, Hukkanen J, Jacob P III (2009) Handb Exp Pharmacol 192:29–60

    Article  Google Scholar 

  6. Benowitz NL, Jacob P III (2001) Br J Clin Pharmacol 51:53–59

    Article  CAS  Google Scholar 

  7. SRNT Subcommittee on Biochemical Verification (2002) Nicotine Tob Res 4:149–159

    Google Scholar 

  8. Lindkvist B, Wierup N, Sundler F, Borgstrom A (2008) Pancreas 37:288–294

    Article  CAS  Google Scholar 

  9. Wagena EJ, de Vos A, Horwith G, van Schayck CP (2008) Nicotine Tob Res 10:213–218

    Article  CAS  Google Scholar 

  10. Nishimura H, Furumiya J, Nakanishi A, Hashimoto Y (2009) Leg Med 11:S565–567

    Google Scholar 

  11. Massadeh AM, Gharaibeh AA, Omari KW (2009) J Chromatogr Sci 72:170–177

    Google Scholar 

  12. Gray TR, Shakleya DM, Huestis MA (2008) J Chromatogr B 863:107–114

    Article  CAS  Google Scholar 

  13. Pellegrini M, Marchei E, Rossi S, Vagnarelli F, Durgbanshi A, Garcia-Algar O, Vall O, Pichini S (2007) Rapid Commun Mass Spectrom 21:2693–2703

    Article  CAS  Google Scholar 

  14. Hoofnagle AN, Laha TJ, Rainey PM, Sadrazadeh SM (2006) Am J Clin Pathol 126:880–887

    Article  CAS  Google Scholar 

  15. Xu X, Iba M, Weisel CP (2004) Clin Chem 50:2323–2330

    Article  CAS  Google Scholar 

  16. Moyer TP, Charlson JR, Enger RJ, Dale LC, Ebbert JO, Schroeder DR, Hurt RD (2002) Clin Chem 48:1460–1471

    CAS  Google Scholar 

  17. Kim I, Huestis MA (2006) J Mass Spectrom 41:815–821

    Article  CAS  Google Scholar 

  18. Kim I, Darwin WD, Huestis MA (2005) J Chromatogr B 814:233–240

    Article  CAS  Google Scholar 

  19. Kataoka H, Inoue R, Yagi K, Saito K (2009) J Pharma Biomed Anal 49:108–114

    Article  CAS  Google Scholar 

  20. Shakleya DM, Huestis MA (2009) J Anal Bioanal Chem 393:1957–1965

    Article  CAS  Google Scholar 

  21. Vine MF, Hulka BS, Margolin BH, Truong YK, Hu PC, Schramm MM, Griffith JD, McCann M, Everson RB (1993) Am J Publ Health 83:1335–1338

    Article  CAS  Google Scholar 

  22. Binnie V, McHugh S, Macpherson L, Borland B, Noir K, Malik K (2004) Oral Diseases 10:287–293

    Article  CAS  Google Scholar 

  23. Bentley MC, Abrar M, Kelk M, Cook J, Phillips K (1999) J Chromatogr B 723:185–194

    Article  CAS  Google Scholar 

  24. Byrd GD, Davis RA, Ogden MW (2005) J Chromatogr Sci 43:133–140

    CAS  Google Scholar 

  25. Krouwer JS, Rabinowitz R (1984) Clin Chem 30:290–292

    CAS  Google Scholar 

  26. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn A. Huestis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakleya, D.M., Huestis, M.A. Optimization and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of nicotine, cotinine, trans-3′-hydroxycotinine and norcotinine in human oral fluid. Anal Bioanal Chem 395, 2349–2357 (2009). https://doi.org/10.1007/s00216-009-3157-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3157-2

Keywords

Navigation