Skip to main content
Log in

Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ion beam analysis (IBA)- and X-ray fluorescence (XRF)-based techniques have been well adopted in cultural-heritage-related analytical studies covering a wide range of diagnostic role, i.e., from screening purposes up to full quantitative characterization. In this work, a systematic research was carried out towards the identification and evaluation of the advantages and the limitations of laboratory-based (IBA, electron probe microanalyzer) and portable (milli-XRF and micro-XRF) techniques. The study focused on the analysis of an Archaic glass bead collection recently excavated from the city of Thebes (mainland, Greece), in order to suggest an optimized and synergistic analytical methodology for similar studies and to assess the reliability of the quantification procedure of analyses conducted in particular by portable XRF spectrometers. All the employed analytical techniques and methodologies proved efficient to provide in a consistent way characterization of the glass bead composition, with analytical range and sensitivity depending on the particular technique. The obtained compositional data suggest a solid basis for the understanding of the main technological features related to the raw major and minor materials utilized for the manufacture of the Thebian ancient glass bead collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5

Similar content being viewed by others

References

  1. Adriaens A (2005) Spectrochim Acta B 60:1503–1516

    Article  CAS  Google Scholar 

  2. Mandò PA (2005) Nucl Phys A 751:393–408

    Article  CAS  Google Scholar 

  3. Trojanowicz M (2007) Anal Bioanal Chem 391(3):915–918

    Article  CAS  Google Scholar 

  4. Calligaro T, Dran JC, Salomon J, Walter PH (2004) Nucl Instr Meth Sect B 226:29

    Article  CAS  Google Scholar 

  5. Von Bohlen A, Röhrs S, Salomon J (2007) Anal Bioanal Chem 387:781–790

    Article  CAS  Google Scholar 

  6. Constantinescu B, Bugoi R, Cojocaru V, Radtke M, Calligaro T, Salomon J, Pichon L, Röhrs S, Ceccato D, Oberländer-Târnoveanu E (2008) Nucl Instr Meth Sect B 266:2325–2328

    Article  CAS  Google Scholar 

  7. Janssens K, Vittiglio G, Deraedt I, Aerts A, Vekemans B, Vincze L, Wei F, de Ryck I, Schalm O, Adams F, Rindby A, Knochel A, Simionovici A, Snigirev A (2000) X-ray Spectrom 29:73–91

    Article  CAS  Google Scholar 

  8. Grassi N, Giuntini L, Mandò PA, Massi M (2007) Nucl Instr Meth Sect B 256:712–718

    Article  CAS  Google Scholar 

  9. Karydas AG, Sokaras D, Zarkadas Ch, Grlj N, Pelicon P, Žitnik M, Schutz R, Malzer W, Kanngiesser B (2007) J Anal At Spectrom 22:1260

    Article  CAS  Google Scholar 

  10. Žitnik M, Pelicon P, Grlj N, Karydas AG, Sokaras D, Schutz R, Kanngiesser B (2008) Appl Phys Lett 93:094104

    Article  CAS  Google Scholar 

  11. Sokaras D, Karydas AG, Malzer W, Schutz R, Kanngiesser B, Grlj N, Pelicon P, Žitnik M (2009) J Anal At Spectrom 24:611

    Article  CAS  Google Scholar 

  12. Kanngiesser B, Malzer W, Reiche I (2003) Nucl Instrum Methods Phys Res Sect B 211–212:259

    Article  CAS  Google Scholar 

  13. Kossionides S, Kokkoris M, Karydas AG, Paradellis T, Kordas G, Moraitou G (2002) Nucl Instrum Methods Phys Res Sect B 195:408–413

    Article  CAS  Google Scholar 

  14. Zucchiatti A, Canonica L, Prati P, Cagnana A, Roascio S, Climent-Font A (2007) J Cult Herit 8:307–314

    Article  Google Scholar 

  15. Šmit Ž, Janssens K, Schalm O, Kos M (2004) Nucl Instrum Methods Phys Res Sect B 213:717–722

    Article  CAS  Google Scholar 

  16. Climent-Font A, Muñoz-Martin A, Ynsa MD, Zucchiatti A (2008) Nucl Instrum Methods Phys Res Sect B 266:640–648

    Article  CAS  Google Scholar 

  17. Mäder M, Neelmeijer C (2004) Nucl Instrum Methods Phys Res Sect B 226:110–118

    Article  CAS  Google Scholar 

  18. Weber G, Vanden-Bemden Y, Pirotte M, Gilbert B (2005) Nucl Instrum Methods Phys Res Sect B 240:512–519

    Article  CAS  Google Scholar 

  19. Šmit Ž, Pelicon P, Vidmar G, Zorko B, Budnar M, Demortier G, Gratuze B, Sturm S, Necemer M, Kump P, Kos M (2000) Nucl Instrum Methods Phys Res Sect B 161–163:718–723

    Google Scholar 

  20. Šmit Ž, Janssens K, Bulska E, Wagner B, Kos M, Lazar I (2005) Nucl Instrum Methods Phys Res Sect B 239:94–99

    Article  CAS  Google Scholar 

  21. Šmit Ž, Pelicon P, Holc M, Kos M (2002) Nucl Instrum Methods Phys Res Sect B 189:344–349

    Article  Google Scholar 

  22. Beckhoff B, Kolbe M, Hahn O, Karydas AG, Zarkadas Ch, Sokaras D, Mantler M (2008) X-ray Spectrom 37:462–465

    Article  CAS  Google Scholar 

  23. Schreiner M, Melcher M, Uhlir K (2007) Anal Bioanal Chem 387:737–747

    Article  CAS  Google Scholar 

  24. Desnica V, Škarić K, Jembrih-Simbuerger D, Fazinić S, Jakšić M, Mudronja D, Pavličić M (2008) Appl Phys A 92:19–23

    Article  CAS  Google Scholar 

  25. Gianoncelli A, Castaing J, Ortega L, Dooryhιe E, Salomon J, Walter P, Hodeau JL, Bordet P (2008) X-ray Spectrom 37:418–423

    Article  CAS  Google Scholar 

  26. Romano FP, Calvi G, Furia E, Garraffo S, Marchetta C, Pappalardo G, Pappalardo L, Rizzo F, Rovelli A (2005) X-ray Spectrom 34:135–139

    Article  CAS  Google Scholar 

  27. Zarzycki J (1991) Glasses and the vitreous state. Cambridge University Press, Cambridge

    Google Scholar 

  28. Henderson J (2000) Science and archaeology of materials. Routledge, London

    Google Scholar 

  29. Biek L, Bayley J (1979) World Archaeology 11(1):1–25

    Article  Google Scholar 

  30. Nikita K, Henderson J (2006) J Glass Stud 48:71

    Google Scholar 

  31. Triantafyllidis P (2008) Rhodian glassware I. Ministry of the Aegean Sea, Athens in Greek, with a 10-page English synopsis

    Google Scholar 

  32. Rehren TH, Spencer L, Triantafyllidis P (2005) The primary production of glass at Hellenistic Rhodes. In: Cool H (ed) Annales du 16e Congres de l'Association Internationale pour l'Histoire du Verre. AIHV, Nottingham, pp 39–43

    Google Scholar 

  33. Aravantinos V (2009) Chronica, Archaeologico Deltio (in press)

  34. Zacharias N, Beltsios K, Oikonomou A, Karydas A, Bassiakos Y, Michael C, Zarkadas CH (2008) Opt Mater 30:1127–1133

    Article  CAS  Google Scholar 

  35. Oikonomou A, Triantafyllidis P, Beltsios K, Zacharias N, Karakassides M (2008) Journal of Non-Crystalline Solids 354:768–772

    Article  CAS  Google Scholar 

  36. Campbell JL, Hopman TL, Maxwell JA, Nejedly Z (2000) Nucl Instr Meth B Sect B 170:193–204

    Article  CAS  Google Scholar 

  37. Mayer JW, Rimini E (1978) Ion beam handbook for material analysis. Academic, New York

    Google Scholar 

  38. Mayer M (1999) Proceedings of the 15th International Conference on the Application of Accelerators in Research and Industry. In: Duggan JL, and Morgan IL (eds) American Institute of Physics Conference Proceedings vol. 475, p 541

  39. Colomban P, Etcheverry MP, Asquier M, Bounichou M, Tournié A (2006) J Raman Spectr 37:614–626

    Article  CAS  Google Scholar 

  40. Shortland A, Schacher L, Freestone I, Tite M (2006) Journal of Archaeological Science 33:521–530

    Article  Google Scholar 

  41. Beltsios KG, Ar O, Zacharias N, Triantafyllidis P (2009) In: Liritzis I, Stevenson C (eds) The dating and provenance of volcanic and ancient manufactured glasses—a global overview. University of New Mexico Press, Albuquerque In press

    Google Scholar 

  42. Aerts A, Velde B, Janssens K, Dijkman W (2003) Spectrochim Acta B 58:659–667

    Article  CAS  Google Scholar 

  43. Degryse P, Shortland AJ (2009) Geol Belg 12:135–143

    CAS  Google Scholar 

  44. Freestone IC, Leslie KA, Thirlwall M, Gorin-Rosen Y (2003) Archaeometry 45:19–32

    Article  CAS  Google Scholar 

  45. Shortland AJ, Eremin K (2006) Archaeometry 48(4):581–603

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project “DEMOEREUNA” funded by NCSR “Demokritos” (2007–2008). Further support to this work was partially provided by the FP7/REGPOT LIBRA Project (grant 230123) and by the project ATT_29, PEP Attikis, cofunded by the Greek General Secreteriat of Research and Technology, Ministry of Development and EU. Furthermore, we would like to acknowledge the Greek Ministry of Culture for providing the permission for the study of the ancient glass beads collection, and also to M. Papageorgiou for having taken the eye-bead photos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sokaras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokaras, D., Karydas, A.G., Oikonomou, A. et al. Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques. Anal Bioanal Chem 395, 2199–2209 (2009). https://doi.org/10.1007/s00216-009-3156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3156-3

Keywords

Navigation