Analytical and Bioanalytical Chemistry

, Volume 396, Issue 6, pp 1977–1990 | Cite as

Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits

  • Tigst DemekeEmail author
  • G. Ronald Jenkins


Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.


DNA extraction Sample matrices DNA quantification PCR inhibitors Variability of DNA yield 



Daniel Perry (Canadian Grain Commission, Winnipeg), Marcia Holden (National Institute of Standards and Technology), Tandace A. Scholdberg and Donald Kendall (USDA/GIPSA, Kansas City) are acknowledged for reviewing the paper and providing useful suggestions.


  1. 1.
  2. 2.
    Davison J, Bertheau Y (2008) Cereal Foods World 53:186–196Google Scholar
  3. 3.
    Convention on Biological Diversity (2000) Protocol on biosafety. Text of the protocol.
  4. 4.
    Hobbs JE, Gaisford JD, Isaac GE, Kerr WA, Klein KK (2002) In: Agricultural biotechnologies: new avenues for production, consumption and technology transfer. Sixth international ICABR conference, Ravello, ItalyGoogle Scholar
  5. 5.
  6. 6.
    Grothaus DG, Bandla B, Currier T, Giroux GR, Jenkins GR, Lipp M, Shan G, Stave JW, Pantella V (2006) J AOAC Int 89:913–928Google Scholar
  7. 7.
    Fagan J (2004) In: Ahmed FE (ed) Testing of genetically modified organisms in food. Food Products, New York, pp 163–220Google Scholar
  8. 8.
    Freese LD (2004)) In: Ahmed FE (ed) Testing of genetically modified organisms in food. Food Products, New York, pp 55–75Google Scholar
  9. 9.
    Laffont JL, Remund KM, Wright D, Simpson RD, Grégoire S (2005) Seed Sci Res 15:197–204CrossRefGoogle Scholar
  10. 10.
    International Organization for Standardization (2005) ISO 21571:2005. Foodstuffs—methods of analysis for the detection of genetically modified organisms and derived products—nucleic acid extraction.
  11. 11.
    Ahmed FE (ed) (2004) Testing of genetically modified organisms in food. Food Products, New YorkGoogle Scholar
  12. 12.
    Lipp M, Shillito R, Giroux R, Spiegelhalter F, Charlton S, Pinero D, Song P (2005) J AOAC Int 88:136–155Google Scholar
  13. 13.
    Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, Marvin HJP, Schimmel H, Rentsch J, van Rie JPPF, Zagon J (2004) Food Chem Toxicol 42:1157–1180CrossRefGoogle Scholar
  14. 14.
    Terry CF, Harris N, Parkes HC (2002) J AOAC Int 85:768–774Google Scholar
  15. 15.
    Doyle JJ, Dole JL (1987) Phytochem Bull 19:11–15Google Scholar
  16. 16.
    Demeke T, Ratnayaka I, Phan A (2009) J AOAC Int 92:1136–1144Google Scholar
  17. 17.
    Bernardo GD, Galderisi U, Cipollaro M, Cascino A (2005) Biotechnol Prog 21:546–549CrossRefGoogle Scholar
  18. 18.
    Bernardo GD, Gaudio SD, Galderisi U, Cascino A, Cipollaro M (2007) Biotechnol Prog 23:297–301CrossRefGoogle Scholar
  19. 19.
    Corbisier P, Broothaerts W, Gioria S, Schimmel H, Burns M, Baoutina A, Emslie KR, Furi S, Kurosawa Y, Holden MJ, Kim H-H, Lee Y-M, Kawaharasaki M, Sin D, Wang J (2007) J Agric Food Chem 55:3249–3257CrossRefGoogle Scholar
  20. 20.
    CRL-GMFF – Community Reference Laboratory for GM Food and Feed (2009) Pioneer.
  21. 21.
    CRL-GMFF – Community Reference Laboratory for GM Food and Feed (2007) Syngenta.
  22. 22.
    Dellaporta SL, Wood J, Hicks JB (1983) Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  23. 23.
    CRL-GMFF – Community Reference Laboratory for GM Food and Feed (2007) Bayer Crop Science.
  24. 24.
    Kim CS, Lee CH, Shin JS, Chung YS, Hyung NI (1997) Nucleic Acids Res 25:1085–1086CrossRefGoogle Scholar
  25. 25.
    Smith DS, Maxwell PW, De Boer SH (2005) J Agric Food Chem 53:9848–9859CrossRefGoogle Scholar
  26. 26.
    Smith DS, Maxwell PW (2007) Food Control 18:236–242CrossRefGoogle Scholar
  27. 27.
    Cankar K, Stebih D, Dreo T, Zel J, Gruden K (2006) BMC Biotechnol 6:37CrossRefGoogle Scholar
  28. 28.
    Peano C, Samson MC, Palmieri L, Gulli M, Marmiroli N (2004) J Agric Food Chem 52:6962–6968CrossRefGoogle Scholar
  29. 29.
    Vaïtilingom M, Pijnenburg H, Gendre F, Brignon P (1999) J Agric Food Chem 47:5261–5266CrossRefGoogle Scholar
  30. 30.
    Yoshimura T, Kuribara H, Kodama T, Yamata S, Futo S, Watanabe S, Aoki N, Lizuka T, Akiyama H, Maitani T, Naito S, Hino A (2005) J Agric Food Chem 53:2060–2069CrossRefGoogle Scholar
  31. 31.
    Holden MJ, Blasic JR, Bussjaeger L, Kao C, Shokere LA, Kendall DC, Freese L, Jenkins GR (2003) J Agric Food Chem 51:2468–2474CrossRefGoogle Scholar
  32. 32.
    Trifa Y, Zhang D (2004) J Agric Food Chem 52:1044–1048CrossRefGoogle Scholar
  33. 33.
    Moreano F, Busch U, Engel K-H (2005) J Agric Food Chem 53:9971–9979CrossRefGoogle Scholar
  34. 34.
    Charles D, Broeders S, Corbisier P, Trapmann S, Schimmel H, Linsinger T, Emons H (2007) J Agric Food Chem 55:3258–3267CrossRefGoogle Scholar
  35. 35.
    Demeke T, Ratnayaka I (2008) Food Control 19:893–897Google Scholar
  36. 36.
    Holst-Jensen A, De Loose M, van den Eede G (2006) J Agric Food Chem 54:2799–2809CrossRefGoogle Scholar
  37. 37.
    Arumuganathan K, Earle ED (1991) Plant Mol Biol Rep 9:202–218Google Scholar
  38. 38.
    Heinemann JA, Sparrow AD, Traavik T (2004) Trends Biotechnol 22:331–336CrossRefGoogle Scholar
  39. 39.
    Papazova N, Malef A, Degrieck I, van Bockstaele, De Loose M (2005) Seed Sci Technol 33:533–542Google Scholar
  40. 40.
    Mafra I, Silva SA, Moreira EJMO, Ferreira de Silva CS, Beatriz M, Oliveira PP (2008) Food Control 19:1183–1190CrossRefGoogle Scholar
  41. 41.
    Deagle BE, Eveson JP, Jarman SN (2006) Front Zool 3:11CrossRefGoogle Scholar
  42. 42.
    Shokere LA, Holden MJ, Jenkins GR (2009) Food Control 20:391–401CrossRefGoogle Scholar
  43. 43.
    Zimmerman A, Luthy J, Pauli U (1998) Z Lebensm Unters Forsch A 207:81–90CrossRefGoogle Scholar
  44. 44.
    Layton DT, Spiegelhalter F (2008) How grain companies are managing the challenges posed by “stacked events” in meeting the global regulatory and commercial requirements for non-GM corn shipments—A comparison of methods in current use.
  45. 45.
    Akiyama H, Watanabe T, Wakabayashi K, Nakade S, Yasui S, Sakata K, Chiba R, Spiegelhalter F, Hino A, Maitani T (2005) Anal Chem 77:7421–7428CrossRefGoogle Scholar
  46. 46.
    Akiyama H, Sakata K, Kondo K, Tanaka A, Liu MS, Oguchi T, Furui S, Kitta K, Hino A, Teshima R (2008) J Agric Food Chem 56:1977–1983CrossRefGoogle Scholar
  47. 47.
    Rossen L, Nørskov P, Holmstrøm K, Rasmussen OF (1992) Int J Food Microbiol 17:37–45CrossRefGoogle Scholar
  48. 48.
    Wilson IG (1997) Appl Environ Microbiol 63:3741–3751Google Scholar
  49. 49.
    Peist R, Honsel D, Twieling G, Löffert D (2001) Qiagen News 3:7–9Google Scholar
  50. 50.
    Demeke T, Adams RP (1992) Biotechniques 12:332–334Google Scholar
  51. 51.
    Popping B (2008) Aspects of modular sampling preparation protocols for various matrices.
  52. 52.
    Rohn S, Rawel HM, Kroll J (2002) J Agric Food Chem 50:3566–3571CrossRefGoogle Scholar
  53. 53.
    Singh RP, Singh M, King RR (1998) J Virol Methods 74:231–235CrossRefGoogle Scholar
  54. 54.
    Duncan E, Setzke E, Lehmann J (2003) General considerations for purification of genomic DNA.
  55. 55.
    Cavaluzzi MJ, Borer PN (2004) Nucleic Acids Res 32:1–9CrossRefGoogle Scholar
  56. 56.
    Stenesh J (1984) Experimental biochemistry. Allyn and Bacon, Needham HeightsGoogle Scholar
  57. 57.
    Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  58. 58.
    Ageno M, Dore E, Frontali C (1969) Biophys J 9:1281–1311CrossRefGoogle Scholar
  59. 59.
    Freifelder D (1978) The DNA molecule, structure and properties. Freeman, San FranciscoGoogle Scholar
  60. 60.
    Holden M, Haynes R, Rabb S, Satija N, Yang K, Blasic JR (2009) J Agric Food Chem 57:7221–7226CrossRefGoogle Scholar
  61. 61.
    Singer VL, Jones LJ, Yue ST, Haugland RP (1997) Anal Biochem 249:228–238CrossRefGoogle Scholar
  62. 62.
    Walsh PS, Varlaro J, Reynolds R (1992) Nucleic Acids Res 20:5061–5065CrossRefGoogle Scholar
  63. 63.
    Kinney J, Leippe D, Lewis K, Lyke B, Mandrekar M, Schultz J (1999) The DNAQuant™ DNA quantitation system for sensitive detection of dsDNA.
  64. 64.
    Chen YW, Ge Y, Xu B (2005) J Agric Food Chem 53:10239–10243CrossRefGoogle Scholar
  65. 65.
    Hupfer CH, Hortzel H, Sachse K, Engel KH (1999) Z Lebensm Unters Forsch A 206:203–207CrossRefGoogle Scholar
  66. 66.
    Scholdberg TA, Norden TD, Nelson DD, Jenkins GR (2009) J Agric Food Chem 57:2903–2911CrossRefGoogle Scholar
  67. 67.
    Van Ness J, Van Ness LK, Galas DJ (2003) Proc Natl Acad Sci USA 100(8):4504–4509CrossRefGoogle Scholar
  68. 68.
    Murray MG, Thompson WF (1980) Nucleic Acids Res 8:4321–4325CrossRefGoogle Scholar
  69. 69.
    Lipp M, Brodmann P, Pietsch K, Pauwels J, Anklam E (1999) J AOAC Int 82:923–928Google Scholar
  70. 70.
    Niu C, Kebede H, Auld DL, Woodward JE, Burow G, Wright RJ (2008) Afr J Biotechnol 7:2818–2822Google Scholar
  71. 71.
    CRL-GMFF – Community Reference Laboratory for GM Food and Feed (2007) Monsanto.
  72. 72.
    Chhalliyil P, Fagan J, Schoel B (2008) Superior performance of fast ID DNA extraction kit in isolation of high quality DNA from food and feed samples for real-time qPCR analyses exemplified with soy and rice products.
  73. 73.
    Rizzi A, Panebianco L, Giaccu D, Sorlini C, Daffonchio D (2003) Ital J Food Sci 15:499–510Google Scholar
  74. 74.
    Minegishi Y, Kurosawa Y, Nishikawa C, Doi N, Kanayama S, Kodama T, Kasahara M, Matsuoka T, Watanabe T, Akiyama H, Teshima R, Mano J, Furui S, Hino A, Kitta K (2008) Evaluation of a new DNA extraction method for PCR detection of genetically modified soybean.
  75. 75.
    Jasbeer K, Ghazali FM, Cheah YK, Son R (2008) Comparison of seven methods for the extraction of DNA from compound feed samples for the purpose of GMO analysis.
  76. 76.
    Tengel C, Schüßler P, Setzke E, Balles J, Sprenger-Haußels M (2001) Biotechniques 31:426–429Google Scholar

Copyright information

© Canadian Grain Commission 2009

Authors and Affiliations

  1. 1.Grain Research LaboratoryCanadian Grain CommissionWinnipegCanada
  2. 2.United States Department of AgricultureGrain Inspection, Packers and Stockyards AdministrationKansas CityUSA

Personalised recommendations