Skip to main content
Log in

Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

Real-time amplification curves for the event MON810 with 1,000, 100, 10, and 1 target copies/reaction of the 35S promoter of the cauliflower mosaic virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anklam E, Gadani F, Heinze P, Pijnenburg H, Van den Eede G (2002) Eur Food Res Technol 214:3–26

    Article  CAS  Google Scholar 

  2. Alexander TW, Reuter T, Aulrich K, Sharma R, Okine EK, Dixon WT, McAllister TA (2007) Anim Feed Sci Technol 133:31–62

    Article  CAS  Google Scholar 

  3. Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, Marvin HJP, Schimmel H, Rentsch J, van Rie JPPF, Zagon J (2004) Food Chem Toxicol 42:1157–1180

    Article  CAS  Google Scholar 

  4. Community Reference Laboratory, GM Food and Feed, Ispra. http://gmo-crl.jrc.ec.europa.eu/statusofdoss.htm

  5. Holst-Jensen A, Rønning SB, Løvseth A, Berdal KG (2003) Anal Bioanal Chem 375:985–993

    CAS  Google Scholar 

  6. Wolf C, Scherzinger M, Wurz A, Pauli U, Hübner P, Lüthy J (2000) Eur Food Res Technol 210:367–372

    Article  CAS  Google Scholar 

  7. Marmiroli N, Maestri E, Gullì M, Malcevschi A, Peano C, Bordoni R, de Bellis G (2008) Anal Bioanal Chem 392:369–384

    Article  CAS  Google Scholar 

  8. James C (2008) ISAAA Brief 39

  9. Michelini E, Simoni P, Cevenini L, Mezzanotte L, Roda A (2008) Anal Bioanal Chem 392:355–367

    Article  CAS  Google Scholar 

  10. Waiblinger HU, Ernst B, Anderson A, Pietsch K (2008) Eur J Food Res Technol 226:1221–1228

    Article  CAS  Google Scholar 

  11. Technische Regel BVL L 00.00-122 (2008)

  12. Waiblinger HU, Boernsen B, Pietsch K (2008) Deut Lebensm-Rundsch 104:261–264

    CAS  Google Scholar 

  13. AGBIOS. http://www.agbios.com/main.php

  14. Tengs T, Kristoffersen A, Berdal K, Thorstensen T, Butenko M, Nesvold H, Holst-Jensen A (2007) BMC Biotechnol 7:91

    Article  Google Scholar 

  15. Bennett MD, Leitch IJ (1997) Ann Bot 80:169–196

    Article  CAS  Google Scholar 

  16. Halpin C (2005) Plant Biotechnol 3:141–155

    Article  CAS  Google Scholar 

  17. Akiyama H, Watanabe T, Wakabayashi K, Nakade S, Yasui S, Sakata K, Chiba R, Spiegelhalter F, Hino A, Maitani T (2005) Anal Chem 77:7421–7428

    Article  CAS  Google Scholar 

  18. Xu W, Yuan Y, Luo Y, Bai W, Zhang C, Huang K (2009) J Agric Food Chem 57:395–402

    Article  CAS  Google Scholar 

  19. Chaouachi M, Chupeau G, Berard A, McKhann H, Romaniuk M, Giancola S, Laval V, Bertheau Y, Brunel D (2008) J Agric Food Chem 56:11596–11606

    Article  CAS  Google Scholar 

  20. Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2001) J Food Hyg Soc Jpn 42:24–32

    Article  CAS  Google Scholar 

  21. James D, Schmidt A-M, Wall E, Green M, Masri S (2003) J Agric Food Chem 51:5829–5834

    Article  CAS  Google Scholar 

  22. Shrestha HK, Hwu K-K, Wang S-J, Liu L-F, Chang M-C (2008) J Agric Food Chem 56:8962–8968

    Article  CAS  Google Scholar 

  23. Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) J Agric Food Chem 53:9713–9721

    Article  CAS  Google Scholar 

  24. Germini A, Zanetti A, Salati C, Rossi S, Forre C, Schmid S, Marchelli R (2004) J Agric Food Chem 52:3275–3280

    Article  CAS  Google Scholar 

  25. Hernandez M, Rodriguez-Lazaro D, Zhang D, Esteve T, Pla M, Prat S (2005) J Agric Food Chem 53:3333–3337

    Article  CAS  Google Scholar 

  26. Gaudron T, Peters C, Boland E, Steinmetz A, Moris G (2009) Eur Food Res Technol 229:295–305

    Article  CAS  Google Scholar 

  27. Xu J, Miao H, Wu H, Huang W, Tang R, Qiu M, Wen J, Zhu S, Li Y (2006) Biosens Bioelectron 22:71–77

    Article  CAS  Google Scholar 

  28. Leimanis S, Hernández M, Fernández S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomènech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139

    Article  CAS  Google Scholar 

  29. Rønning SB, Vaïtilingom M, Berdal KG, Holst-Jensen A (2003) Eur Food Res Technol 216:347–354

    Google Scholar 

  30. Huang C-C, Pan T-M (2005) J Agric Food Chem 53:3833–3839

    Article  CAS  Google Scholar 

  31. Hemmer W (1997) Foods derived from genetically modified organisms and detection methods. BATS-Report 2/1997, Agency for Biosafety Research and Assessment of Technology Impacts of the Swiss Priority Program Biotechnology of the Swiss National Science Foundation, Basel, Switzerland

  32. Salvi S, D’Orso F, Morelli G (2008) J Agric Food Chem 56:4320–4327

    Article  CAS  Google Scholar 

  33. Holden MJ, Blasic JR, Bussjaeger L, Kao C, Shokere LA, Kendall DC (2003) J Agric Food Chem 51:2468–2474

    Article  CAS  Google Scholar 

  34. Wilson IG (1997) Appl Environ Microbiol 63:3741–3751

    CAS  Google Scholar 

  35. Cazzola ML, Petruccelli S (2006) Electronic J Biotechnol 9:320–325

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Henno Dörries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörries, HH., Remus, I., Grönewald, A. et al. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs). Anal Bioanal Chem 396, 2043–2054 (2010). https://doi.org/10.1007/s00216-009-3149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3149-2

Keywords

Navigation