Analytical and Bioanalytical Chemistry

, Volume 396, Issue 6, pp 2043–2054 | Cite as

Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs)

  • Hans-Henno DörriesEmail author
  • Ivonne Remus
  • Astrid Grönewald
  • Cordt Grönewald
  • Kornelia Berghof-Jäger
Original Paper


The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.


Real-time amplification curves for the event MON810 with 1,000, 100, 10, and 1 target copies/reaction of the 35S promoter of the cauliflower mosaic virus.


Genetically modified organisms GMO Real-time PCR Multiplex PCR Screening 


  1. 1.
    Anklam E, Gadani F, Heinze P, Pijnenburg H, Van den Eede G (2002) Eur Food Res Technol 214:3–26CrossRefGoogle Scholar
  2. 2.
    Alexander TW, Reuter T, Aulrich K, Sharma R, Okine EK, Dixon WT, McAllister TA (2007) Anim Feed Sci Technol 133:31–62CrossRefGoogle Scholar
  3. 3.
    Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, Marvin HJP, Schimmel H, Rentsch J, van Rie JPPF, Zagon J (2004) Food Chem Toxicol 42:1157–1180CrossRefGoogle Scholar
  4. 4.
    Community Reference Laboratory, GM Food and Feed, Ispra.
  5. 5.
    Holst-Jensen A, Rønning SB, Løvseth A, Berdal KG (2003) Anal Bioanal Chem 375:985–993Google Scholar
  6. 6.
    Wolf C, Scherzinger M, Wurz A, Pauli U, Hübner P, Lüthy J (2000) Eur Food Res Technol 210:367–372CrossRefGoogle Scholar
  7. 7.
    Marmiroli N, Maestri E, Gullì M, Malcevschi A, Peano C, Bordoni R, de Bellis G (2008) Anal Bioanal Chem 392:369–384CrossRefGoogle Scholar
  8. 8.
    James C (2008) ISAAA Brief 39Google Scholar
  9. 9.
    Michelini E, Simoni P, Cevenini L, Mezzanotte L, Roda A (2008) Anal Bioanal Chem 392:355–367CrossRefGoogle Scholar
  10. 10.
    Waiblinger HU, Ernst B, Anderson A, Pietsch K (2008) Eur J Food Res Technol 226:1221–1228CrossRefGoogle Scholar
  11. 11.
    Technische Regel BVL L 00.00-122 (2008)Google Scholar
  12. 12.
    Waiblinger HU, Boernsen B, Pietsch K (2008) Deut Lebensm-Rundsch 104:261–264Google Scholar
  13. 13.
  14. 14.
    Tengs T, Kristoffersen A, Berdal K, Thorstensen T, Butenko M, Nesvold H, Holst-Jensen A (2007) BMC Biotechnol 7:91CrossRefGoogle Scholar
  15. 15.
    Bennett MD, Leitch IJ (1997) Ann Bot 80:169–196CrossRefGoogle Scholar
  16. 16.
    Halpin C (2005) Plant Biotechnol 3:141–155CrossRefGoogle Scholar
  17. 17.
    Akiyama H, Watanabe T, Wakabayashi K, Nakade S, Yasui S, Sakata K, Chiba R, Spiegelhalter F, Hino A, Maitani T (2005) Anal Chem 77:7421–7428CrossRefGoogle Scholar
  18. 18.
    Xu W, Yuan Y, Luo Y, Bai W, Zhang C, Huang K (2009) J Agric Food Chem 57:395–402CrossRefGoogle Scholar
  19. 19.
    Chaouachi M, Chupeau G, Berard A, McKhann H, Romaniuk M, Giancola S, Laval V, Bertheau Y, Brunel D (2008) J Agric Food Chem 56:11596–11606CrossRefGoogle Scholar
  20. 20.
    Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2001) J Food Hyg Soc Jpn 42:24–32CrossRefGoogle Scholar
  21. 21.
    James D, Schmidt A-M, Wall E, Green M, Masri S (2003) J Agric Food Chem 51:5829–5834CrossRefGoogle Scholar
  22. 22.
    Shrestha HK, Hwu K-K, Wang S-J, Liu L-F, Chang M-C (2008) J Agric Food Chem 56:8962–8968CrossRefGoogle Scholar
  23. 23.
    Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) J Agric Food Chem 53:9713–9721CrossRefGoogle Scholar
  24. 24.
    Germini A, Zanetti A, Salati C, Rossi S, Forre C, Schmid S, Marchelli R (2004) J Agric Food Chem 52:3275–3280CrossRefGoogle Scholar
  25. 25.
    Hernandez M, Rodriguez-Lazaro D, Zhang D, Esteve T, Pla M, Prat S (2005) J Agric Food Chem 53:3333–3337CrossRefGoogle Scholar
  26. 26.
    Gaudron T, Peters C, Boland E, Steinmetz A, Moris G (2009) Eur Food Res Technol 229:295–305CrossRefGoogle Scholar
  27. 27.
    Xu J, Miao H, Wu H, Huang W, Tang R, Qiu M, Wen J, Zhu S, Li Y (2006) Biosens Bioelectron 22:71–77CrossRefGoogle Scholar
  28. 28.
    Leimanis S, Hernández M, Fernández S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomènech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139CrossRefGoogle Scholar
  29. 29.
    Rønning SB, Vaïtilingom M, Berdal KG, Holst-Jensen A (2003) Eur Food Res Technol 216:347–354Google Scholar
  30. 30.
    Huang C-C, Pan T-M (2005) J Agric Food Chem 53:3833–3839CrossRefGoogle Scholar
  31. 31.
    Hemmer W (1997) Foods derived from genetically modified organisms and detection methods. BATS-Report 2/1997, Agency for Biosafety Research and Assessment of Technology Impacts of the Swiss Priority Program Biotechnology of the Swiss National Science Foundation, Basel, SwitzerlandGoogle Scholar
  32. 32.
    Salvi S, D’Orso F, Morelli G (2008) J Agric Food Chem 56:4320–4327CrossRefGoogle Scholar
  33. 33.
    Holden MJ, Blasic JR, Bussjaeger L, Kao C, Shokere LA, Kendall DC (2003) J Agric Food Chem 51:2468–2474CrossRefGoogle Scholar
  34. 34.
    Wilson IG (1997) Appl Environ Microbiol 63:3741–3751Google Scholar
  35. 35.
    Cazzola ML, Petruccelli S (2006) Electronic J Biotechnol 9:320–325Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Hans-Henno Dörries
    • 1
    Email author
  • Ivonne Remus
    • 1
  • Astrid Grönewald
    • 1
  • Cordt Grönewald
    • 1
  • Kornelia Berghof-Jäger
    • 1
  1. 1.BIOTECON Diagnostics GmbHPotsdamGermany

Personalised recommendations