Skip to main content
Log in

FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present study, the analytical strengths and limitations of near-infrared (NIR) spectroscopy to non-invasively characterize organic components in painting materials have been investigated. In spite of the increased amount of information available today from advanced modern analytical instrumentations dedicated to cultural heritage, the non-invasive identification of materials belonging to the wide class of organic compounds historically used in paintings is still a challenging task. Near-infrared spectroscopy offers several attractive features that make this technique particularly suitable to this purpose. In fact, it is non-invasive, allows for non-contact measurements in reflectance mode, gives molecular information on complex macromolecules, and can be performed on-site by means of portable devices. First-derivative transformation of reflectance spectroscopic data has been applied to provide a simple and fast way to deduce more information from NIR spectra. This approach has allowed spectral features to be identified that can be useful to distinguish different compounds belonging to the classes of lipids, proteins, and resins. To this purpose, at first, a spectral database of pure standard has been collected. Our analytical approach was then successfully validated on pictorial models reproducing the typical stratigraphy of an easel painting. As final step, the study of a real painting has been attempted and a drying oil, animal glue, and a terpenic natural resin, as well as an earth pigment were clearly identified, as cross-validated by GC-MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Siesler HW, Ozaki Y, Kawata S, Heise HM (2002) In: Near-infrared spectroscopy: principles, instruments, application. Wiley

  2. Blanco M, Coello J, Iturriaga H, Maspoch S, de la Pezuela C (1998) Analyst 123:135R–150R

    Article  CAS  Google Scholar 

  3. Cruz Sarraguça M, Almeida Lopez J (2009) Vibrational Spectroscopy 49:204–210

  4. Reid LM, O’Donnell CP, Downey G (2006) Trends Food Sci Technol 17:344–353

    Article  CAS  Google Scholar 

  5. Karoui R, de Baerdemaeker J (2007) Food Chem 102:621–640

    Article  CAS  Google Scholar 

  6. Lachenal G (1995) Vibrational Spetroscopy 9:93–100

    Article  CAS  Google Scholar 

  7. Bacci M, Chiari R, Porcinai S, Radicati B (1997) Chemometr Intell Lab Syst 39:115–121

    Article  CAS  Google Scholar 

  8. Lichtblau D, Strlič M, Trafela T, Kolar J, Anders M (2008) Applied Physics A 92(1):191–195

    Article  CAS  Google Scholar 

  9. Jurado-Lopez A, de Castro MD Luque (2004) Anal Bioanal Chem 380:706–711

    Article  CAS  Google Scholar 

  10. Trafela T, Strli M, Kolar J, Lichtblau DA, Anders M, Pucko Mencigar D, Pihlar B (2007) Anal Chem 79:6319–6323

    Article  CAS  Google Scholar 

  11. Dumitrescu OR, Baker DC, Foster GM, Evans KE (2005) Polym Test 24:367–375

    Article  CAS  Google Scholar 

  12. Jiang B, Dong Huang Y (2007) Int J Mol Sci 8(6):541–552

    Article  CAS  Google Scholar 

  13. Savitzky A, Golay M (1964) Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  14. Andreotti A, Bonaduce I, Colombini MP, Gautier G, Modugno F, Ribechini E (2006) Anal Chem 78:4490–4500

    Article  CAS  Google Scholar 

  15. Christy AA, Kasemsumran S, Du Y, Ozaki Y (2004) Anal Sci 20:935–940

    Article  CAS  Google Scholar 

  16. Workman J, Weyer Jr L (2007) In: Practical guide to interpretative near-infrared spectroscopy. CRC

  17. Manzano E, Navas N, Checa-Moreno R, Rodriguez-Simón L, Capitán-Vallvey LF (2009) Talanta 77:1724–1731

    Article  CAS  Google Scholar 

  18. Dietemann P, Higgitt C, Kälin M, Edelmann MJ, Knochenmuss R, Zenobi R (2009) J Cult Herit 10:30–40

    Article  Google Scholar 

  19. Boyatzis S, Ioakimoglou E, Argitis P (2002) J Appl Polym Sci 84:936–949

    Article  Google Scholar 

  20. Doménech-Carbó MT, Kuckova S, de la Cruz-Cañizares J, Osete-Cortina L (2006) J Chromatogr 1121:248–258

    Article  Google Scholar 

  21. Bacci M (2000) In: Ciliberto E, Spoto G (eds) Modern analytical methods in art and archaeology. Wiley, New York, pp 321–361

    Google Scholar 

  22. Bacci M, Magrini D, Picollo M, Vervat M (2009) J Cult Herit 10:275–280

    Article  Google Scholar 

  23. Frost RL, Reddy BJ, Wain DL, Martens WN (2007) Spectrochimica Acta part A 66:1075–1081

    Article  Google Scholar 

  24. Colombini MP, Modugno F (2004) J Sep Sci 27:147–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by Eu-ARTECH (contract RII3-CT-2004-506171), a project of the Sixth FP of the European Union within the program of Research Infrastructure, is acknowledged. The authors are also grateful to COO.BE.C (Cooperativa Beni Culturali) of Spoleto, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vagnini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vagnini, M., Miliani, C., Cartechini, L. et al. FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Anal Bioanal Chem 395, 2107–2118 (2009). https://doi.org/10.1007/s00216-009-3145-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3145-6

Keywords

Navigation