Skip to main content

On-site analysis of archaeological artifacts excavated from the site on the outcrop at Northwest Saqqara, Egypt, by using a newly developed portable fluorescence spectrometer and diffractometer


Blue-painted pottery was produced in the New Kingdom, Egypt, and decorated with blue, red, and black pigment. In this study, two newly developed portable instruments, a portable X-ray fluorescence spectrometer and a portable X-ray powder diffractometer, were brought to the site on the outcrop at Northwest Saqqara, an archaeological site in Egypt, to verify their performance in on-site analysis of excavated artifacts at the site. Pigments used for the blue-painted pottery and plasters in the New Kingdom were analyzed by these instruments on the basis of both their chemical compositions and crystal-structural information. The blue pigments were identified as two different pigments, Egyptian blue and cobalt blue. The diffraction pattern of the blue pigment of the painted pottery exhibited that of spinel structure. The XRF spectrum of the blue pigment obtained by the same instrument from the same position indicates the presence of Mn, Co, Fe, Ni, and Zn. The possibility of compositional transitions of the cobalt blue pigment with time was revealed on by detailed analysis of the XRF data. The reason for the transitions is considered together with the archaeological background of the New Kingdom, Egypt.

On site XRF analysis at an archaeological excavation site has revealed that the typological transition of blue-painted pottery excavated from the site on the outcrop at Northwest Saqqara, Egypt was followed by a chemical compositional transion of the pigment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Nakai I, Taguchi I, Yamasaki K (1991) Anal Sci 7 Suppl:365–368

    Google Scholar 

  2. 2.

    Dooryhée E, Martinetto P, Walter Ph, Anne M (2004) Radiat Phys Chem 71:863–868

    Article  Google Scholar 

  3. 3.

    Pradell T, Molera J, Pantos E, Smith AD, Martin CM, Labrador A (2008) Appl Phys A 90:81–88

    Article  CAS  Google Scholar 

  4. 4.

    Frierman JD, Bowman HR, Perlman I, York CM (1969) Sci 164:588

    Article  Google Scholar 

  5. 5.

    Williams-Thorpe O, Potts PJ, Webb PC (1999) J Archaeol Sci 26:215–237

    Article  Google Scholar 

  6. 6.

    Hocquet FP, Garnir HP, Marchal A, Clar M, Oger C, Strivay D (2008) X-Ray Spectrom 37:304–308

    Article  CAS  Google Scholar 

  7. 7.

    Uda M, Nakamura M, Yoshimura S, Kondo J, Saito M, Shirai Y, Hasegawa S, Baba Y, Ikeda K, Ban Y, Matsuo A, Tamada M, Sunaga H, Oshio H, Yamashita D, Nakajima Y, Utaka T (2002) Nucl Instrum Methods Phys Res Sect B 189:382–386

    Article  CAS  Google Scholar 

  8. 8.

    Uda M, Ishizaki A, Satoh R, Okada K, Nakajima Y, Yamashita D, Ohashi K, Sakuraba Y, Shimono A, Kojima D (2005) Nucl Instrum Methods Phys Res Sect B 239:77–84

    Article  CAS  Google Scholar 

  9. 9.

    Sanada T, Hokura A, Nakai I, Maeo S, Nomura S, Taniguchi K, Utaka T, Yoshimura S (2003) Adv X-Ray Chem Anal 34:289–306 in Japanese

    CAS  Google Scholar 

  10. 10.

    Nakai I, Hokura A, Sanada T, Sawada T, Maeo S Taniguchi K (2006) Non-destr Exam Cult Objects Adv X-ray Anal 63–69

  11. 11.

    Nakai I, Yamada S, Hokura A, Terada Y, Shindo Y, Utaka T (2005) X-Ray Spectrom 34:46–51

    Article  CAS  Google Scholar 

  12. 12.

    Kikugawa K, Abe Y, Sanada T, Nakai I (2009) Adv X-Ray Chem Anal 40:325–337 in Japanese

    CAS  Google Scholar 

  13. 13.

    Tantrakarn K, Kato N, Hokura A, Nakai I, Fujii Y, Gluščević S (2009) X-Ray Spectrom 38:121–127

    Article  CAS  Google Scholar 

  14. 14.

    Kato N, Nakai I, Shindo Y (2009) J Archaeol Sci 36:1698–1707

    Article  Google Scholar 

  15. 15.

    Maeo S, Nakai I, Nomura S, Yamao H, Taniguchi K (2003) Adv X-Ray Chem Anal 34:125–132 in Japanese

    CAS  Google Scholar 

  16. 16.

    Nakai I, Maeo S, Tashiro T, Tantrakarn K, Utaka T, Taniguchi K (2007) Adv X-Ray Chem Anal 38:371–386 in Japanese

    CAS  Google Scholar 

  17. 17.

    Abe Y, Tantrakarn K, Nakai I, Maeo S, Utaka T, Taniguchi K (2008) Adv X-Ray Chem Anal 39:209–222 in Japanese

    CAS  Google Scholar 

  18. 18.

    Chiari G (2008) Nature 453:159

    Article  CAS  Google Scholar 

  19. 19.

    Yoshimura S, Hasegawa S (1995) Waseda J Hum Sci 8:177–189 in Japanese

    Google Scholar 

  20. 20.

    The Society for the Egyptian Studies of Waseda University (1995–2009) The Journal of Egyptian Studies Occasional Publication No. 1–13. Waseda University Press, Tokyo (in Japanese)

  21. 21.

    Riederer J (1974) Archaeometry 43:483–490

    Google Scholar 

  22. 22.

    Noll W, Hangst K (1975) Neues Jahrb Mineral Monatsh 209–214

  23. 23.

    Noll W (1981) In: Hughes M (ed) Mineralogy and technology of the painted ceramics of ancient Egypt. British Museum, London

    Google Scholar 

  24. 24.

    Hope CA (1991) Cahiers de la Céramique Égyptienne 2:17–92

    Google Scholar 

  25. 25.

    Shortland AJ, Hope CA, Tite MS (2006) In: Maggetti M, Messiga B (eds) Geomaterials in cultural heritage. Geological Society, London, pp 91–99

    Google Scholar 

  26. 26.

    IAEA (2000) WinQXAS, Quantitative X-ray Analysis System for Windows, A Software from International Atomic Energy Agency.

  27. 27.

    ICDD (2006) The Powder Diffraction File, PDF. International Centre for Diffraction Data, PA

    Google Scholar 

  28. 28.

    Bachmann HG, Everts H, Hope CA (1980) Mitt Dtsch Archäol Inst Abt Kairo 36:33–37

    Google Scholar 

  29. 29.

    Warachim H, Rzechula J, Pielak A (1985) Ceram Int 11:103–106

    Article  CAS  Google Scholar 

  30. 30.

    Rehren T (2001) Archaeometry 43:483–490

    Article  Google Scholar 

  31. 31.

    Shortland AJ, Tite MS, Ewart I (2006) Archaeometry 48:153–168

    Article  CAS  Google Scholar 

  32. 32.

    Kaczmarczyk A (1986) Proc 24th Int Archaeom Symp 369–376

  33. 33.

    Jaksch H, Seipel W, Weiner KL, Goresy AE (1983) Naturwissenschaften 70:525–535

    Article  CAS  Google Scholar 

  34. 34.

    Lee L, Quirke S (2000) In: Nicholson PT, Shaw I (eds) Ancient Egyptian Materials and Technology. Cambridge University Press, Cambridge, pp 104–120

    Google Scholar 

  35. 35.

    Noll W, Holm R, Born L (1975) Angew Chem Int Ed 14:602–613

    Article  Google Scholar 

  36. 36.

    Lucas A, Harris JR (1962) Ancient Egyptian Material and Industries, 4th edn. Hodder and Stoughton Educational, London

    Google Scholar 

Download references


The Ourstex 100FA-II portable X-ray fluorescence spectrometer was jointly developed with the Ourstex Corporation. We are deeply grateful to Mr Y. Nakajima and Mr H. Nagai. Development and improvement of a portable X-ray powder diffractometer, the X-tec PT-APXRD were jointly carried out by the Institute of X-Ray Technologies Co., Ltd. We would like to express our gratitude to Dr K. Taniguchi, Mr T. Utaka, and S. Maeo.

Author information



Corresponding author

Correspondence to Izumi Nakai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abe, Y., Nakai, I., Takahashi, K. et al. On-site analysis of archaeological artifacts excavated from the site on the outcrop at Northwest Saqqara, Egypt, by using a newly developed portable fluorescence spectrometer and diffractometer. Anal Bioanal Chem 395, 1987–1996 (2009).

Download citation


  • Archaeometry
  • Portable XRF
  • Portable XRD
  • Cobalt blue
  • On-site analysis