Skip to main content
Log in

Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Extending spatial resolution in laser-based chemical analysis to the nanoscale becomes increasingly important as nanoscience and nanotechnology develop. Implementation of femtosecond laser pulses arises as a basic strategy for increasing resolution since it is associated with spatially localized material damage. In this work we study femtosecond laser far- and near-field processing of silicon (Si) at two distinct wavelengths (400 and 800 nm), for nanoscale chemical analysis. By tightly focusing femtosecond laser beams in the far-field, we were able to produce sub-micrometer craters. In order to further reduce the crater size, similar experiments were performed in the near-field through sub-wavelength apertures, resulting in the formation of sub-30-nm craters. Laser-induced breakdown spectroscopy (LIBS) was used for chemical analysis with a goal to identify the minimum crater size from which spectral emission could be measured. Emission from sub-micrometer craters (full width at half maximum) was possible, which are among the smallest ever reported for femtosecond LIBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Russo RE, Mao XL, Gonzalez JJ, Mao SS (2002) J Anal At Spectrom 17:1072–1075

    Article  CAS  Google Scholar 

  2. Russo RE, Mao XL, Liu C, Gonzalez JJ (2004) J Anal At Spectrom 19:1084–1089

    Article  CAS  Google Scholar 

  3. Durrant SF (1999) J Anal At Spectrom 14:1385–1403

    Article  CAS  Google Scholar 

  4. Günther D, Jackson SE, Longerich HP (1999) Spectrochim Acta B 54:381–409

    Article  Google Scholar 

  5. Lee WB, Wu JY, Lee YI, Sneddon J (2004) Applied Spectroscopy Reviews 39:27–97

    Article  CAS  Google Scholar 

  6. Bäuerle D (2000) Laser processing and chemistry. Springer, Berlin

    Google Scholar 

  7. Pronko PP, Dutta SK, Squier J, Rudd JV, Du D, Mourou G (1995) Opt Commun 114:106–110

    Article  CAS  Google Scholar 

  8. Assion A, Wollenhaupt M, Haag L, Mayorov F, Sarpe-Tudoran C, Winter M, Kutschera U, Baumer T (2003) Appl Phys, B Lasers Opt 77:391–397

    Article  CAS  Google Scholar 

  9. Hwang DJ, Jeon H, Grigoropoulos CP, Yoo J, Russo RE (2007) Applied Physics Letters 91: 251118-1-3.

    Google Scholar 

  10. Zenobi R, Deckert V (2000) Angew Chem Int Ed 39:1746–1756

    Article  Google Scholar 

  11. De Serio M, Zenobi R, Deckert V (2003) Trends Anal Chem 22:70–77

    Article  Google Scholar 

  12. Kim J, Song KB (2007) Micron 38:409–426

    Article  CAS  Google Scholar 

  13. Zeisel D, Nettesheim S, Dutoit B, Zenobi R (1996) Appl Phys Lett 68:2491–2492

    Article  CAS  Google Scholar 

  14. Lin Y, Hong MH, Wang WJ, Law YZ, Chong TC (2005) Appl Phys A 80:461–465

    Article  CAS  Google Scholar 

  15. Lin Y, Hong MH, Wang WJ, Wang ZB, Chen GX, Xie Q, Tan LS, Chong TC (2007) Sens Actuators A 133:311–316

    Article  Google Scholar 

  16. Wen SB, Greif R, Russo RE (2007) Appl Phys Lett 91:251113-1-3

    Google Scholar 

  17. Hwang DJ, Grigoropoulos CP, Yoo J, Russo RE (2006) Appl Phys Lett 89: 254101-1-3

    Google Scholar 

  18. Hwang DJ, Jeon H, Grigoropoulos CP, Yoo J, Russo RE (2008) J Appl Physi 104: 013110-1-12.

    Google Scholar 

  19. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) Rev Sci Instrum 78:013705-1-8

    Google Scholar 

  20. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Science 251:1468–1470

    Article  Google Scholar 

  21. Zorba V, Mao XL, Russo RE (2009) Appl Phys Lett 95:041110-1-3.

    Google Scholar 

  22. Lide DR (1994) CRC handbook of chemistry and physics. CRC, Boca Raton, pp 12–134

    Google Scholar 

  23. Schafer SA, Lyon SA (1982) J Vac Sci Tech 21:422–425

    Article  CAS  Google Scholar 

  24. Hwang DJ, Grigoropoulos CP, Choi TY (2006) J Appl Physi 99:083101-1-6.

    Google Scholar 

  25. Montaser A, Golightly DW (1992) Inductively Coupled Plasmas in Analytical Atomic Spectroscopy, 2nd Edition (VCH) p. 375.

Download references

Acknowledgments

This research has been supported by the Chemical Science Division, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The authors are pleased to acknowledge helpful discussions with Paul Berdahl of LBNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorba, V., Mao, X. & Russo, R.E. Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis. Anal Bioanal Chem 396, 173–180 (2010). https://doi.org/10.1007/s00216-009-3136-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3136-7

Keywords

Navigation