Skip to main content
Log in

Solid-contact pH-selective electrode using multi-walled carbon nanotubes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-µm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bakker E, Pretsch E (2007) Modern potentiometry. Angew Chem Int Edit 46(30):5660–5668

    Article  CAS  Google Scholar 

  2. Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108(2):329–351

    Article  CAS  Google Scholar 

  3. Chumbimuni-Torres KY, Rubinova N, Radu A, Kubota LT, Bakker E (2006) Solid contact potentiometric sensors for trace level measurements. Anal Chem 78(4):1318–1322

    Article  CAS  Google Scholar 

  4. Michalska A, Hulanicki A, Lewenstam A (1994) All-solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst 119(11):2417–2420

    Article  CAS  Google Scholar 

  5. Lindner E, Gyurcsanyi RE (2009) Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem 13(1):51–68

    Article  CAS  Google Scholar 

  6. Lai CZ, Joyer MM, Fierke MA, Petkovich ND, Stein A, Buhlmann P (2009) Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts. J Solid State Electrochem 13(1):123–128

    Article  CAS  Google Scholar 

  7. Fouskaki M, Chaniotakis N (2008) Fullerene-based electrochemical buffer layer for ion-selective electrodes. Analyst 133(8):1072–1075

    Article  CAS  Google Scholar 

  8. Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80(4):1316–1322

    Article  CAS  Google Scholar 

  9. Crespo GA, Macho S, Bobacka J, Rius FX (2009) Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Anal Chem 81(2):676–681

    Article  CAS  Google Scholar 

  10. Lai CZ, Fierke MA, Stein A, Buhlmann P (2007) Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal Chem 79(12):4621–4626

    Article  CAS  Google Scholar 

  11. Dai HJ (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500(1–3):218–241

    Article  CAS  Google Scholar 

  12. Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J-M (2007) Introduction to carbon nanotubes. In Springer Handbook of Nanotechnology, pp 43-112

  13. Heng LY, Chern LH, Ahmad M (2002) A hydrogen ion-selective sensor based on non-plasticised methacrylic-acrylic membranes. Sensors 2(8):339–346

    Article  CAS  Google Scholar 

  14. Heng LY, Hall EAH (2000) Methacrylic-acrylic polymers in ion-selective membranes: achieving the right polymer recipe. Anal Chim Acta 403(1–2):77–89

    Article  CAS  Google Scholar 

  15. Buck RP, Lindner E (1994) Recommendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994). Pure and Applied Chemistry 66(12):2527–2536

    Article  CAS  Google Scholar 

  16. Bakker E, Pretsch E, Buhlmann P (2000) Selectivity of potentiometric ion sensors. Anal Chem 72(6):1127–1133

    Article  CAS  Google Scholar 

  17. Piao MH, Yoon JH, Gerok J, Shim YB (2003) Characterization of all solid state hydrogen ion selective electrode based on PVC-SR hybrid membranes. Sensors 3(6):192–201

    Article  CAS  Google Scholar 

  18. Bobacka J (1999) Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal Chem 71(21):4932–4937

    Article  CAS  Google Scholar 

  19. Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 12(16):1286–1292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish MICINN, through the project grants NAN2004-09306-C05-05 and CTQ2006-7-67570/BQU. G.A.C. also acknowledges MICINN for the doctoral fellowship AP2006-04171 and D.G acknowledges the economic support provided by the Universitat Rovira i Virgili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Xavier Rius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo, G.A., Gugsa, D., Macho, S. et al. Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Anal Bioanal Chem 395, 2371–2376 (2009). https://doi.org/10.1007/s00216-009-3127-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3127-8

Keywords

Navigation