Skip to main content
Log in

Application of synchronous fluorescence to parchment characterization

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A nondestructive method for quantitative parchment characterization and sensitive indication of its deterioration stage was developed. Synchronous fluorescence (SF) measurements were applied for the first time to parchment samples. The method provides detailed spectral features, which are useful for parchment characterization. The discrimination of parchment samples into groups (modern, historical, and artificially aged) was successfully performed. The SF spectra could be resolved into specific fluorophores, which were related to the parchment condition. The spectral data indicate a continuous change in the collagen-to-gelatin ratio during the aging process. Depth-resolved synchronous fluorescence spectra were also measured. The data indicate that parchments possess a layered structure, and the dominant fluorophore in the upper layer is different from those in the lower layers. Layer-resolved profiling allows for quantifying the contribution of each fluorophore in each given layer. This way, significant differences between modern, artificially aged, and historical samples can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sionkowska A, Skopinska J, Wisniewski M (2004) Polym Degrad Stab 83:117–125

    Article  CAS  Google Scholar 

  2. Kaminska A, Sionkowska A (1996) Polym Degrad Stab 51:15–18

    Article  CAS  Google Scholar 

  3. Sionkowska A (2001) Polym Degrad Stab 73:107–112

    Article  CAS  Google Scholar 

  4. Sionkowska A (2000) Polym Degrad Stab 67:79–83

    Article  CAS  Google Scholar 

  5. Sionkowska A, Kaminska A (1999) J Photochem Photobiol 120:207–210

    Article  CAS  Google Scholar 

  6. Sionkowska A (2000) Polym Degrad Stab 68:147–151

    Article  CAS  Google Scholar 

  7. Torikai A, Shibata H (1999) J Appl Polym Sci 73:1259–1265

    Article  CAS  Google Scholar 

  8. Miles CA, Sionkowska A, Hulin SL, Sims TJ, Avery NC, Bailey AJ (2000) J Biol Chem 275(42):33014–33020

    Article  CAS  Google Scholar 

  9. Fujimori E (1966) Biochemistry 5(3):1034–1040

    Article  CAS  Google Scholar 

  10. Larsen R (2002) (ed.), Microanalysis of parchment, Archetype, London

  11. Potts PJ, Ellis AT, Kregsamer P, Marshall J, Streli C, West M, Wobrauschek P (2003) J Anal At Spectrom 18:1297–1316

    Article  CAS  Google Scholar 

  12. Wouters J (2002) 5th European Commission Conference on Research for Protection, Conservation and Enhancement of Cultural Heritage, Cracow, Poland

  13. Dolgin B, Bulatov V, Schechter I (2007) Anal Bioanal Chem 388:1885–1896

    Article  CAS  Google Scholar 

  14. Dolgin B, Chen Y, Bulatov V, Schechter I (2006) Anal Bioanal Chem 386:1535–1541

    Article  CAS  Google Scholar 

  15. Dolgin B, Bulatov V, Chen Y, Schechter I (2008) Am Lab 40 (6)

  16. Meyers R (ed) (2000) Encyclopedia of analytical chemistry. Wiley, Chichester

  17. Dramićanin T, Dramićanin MD, Jokanović V, Vukosavljević DN, Dimitrijević B (2005) Photochem Photobiol 81:1554–1558

    Article  Google Scholar 

  18. Della Gatta G, Badea E, Ceccarelli R, Usacheva T, Mašic A, Coluccia S (2005) J Therm Anal Calorim 82(3):637–649

    Article  CAS  Google Scholar 

  19. Chanine C (2000) Thermochimica Acta 365:101–110

    Article  Google Scholar 

  20. Menter JA, Williamson GD, Carlyle K, Moore CL, Willis I (1995) Photochem Photobiol 62(3):402–408

    Article  CAS  Google Scholar 

  21. Yova D, Theodossiou T, Hovhannisyan H (1998) SPIE 3565:174–180

    Article  CAS  Google Scholar 

  22. Weiner S, Kustanovich Z, Gil-Av E, Traub W (1980) Nature 287(5785):820–823

    Article  CAS  Google Scholar 

  23. Theodossiou T, Rapti G, Hovhannisyan V, Georgiou E, Politopolos K, Yova D (2002) Lasers Med Sci 17:34–41

    Article  CAS  Google Scholar 

  24. Xiao Y, Guo M, Parker K, Hutson MS (2006) Biophys J 91:1424–1432

    Article  CAS  Google Scholar 

  25. Gaspard S, Oujja M, Abrusci C, Catalina F, Lazare S, Desvergne JP, Castillejo MJ (2008) Photochem Photobiol A 193:187–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank I. Rabin for supplying parchment samples and SEM microphotographs. VB thanks the Israel Ministry of Absorbtion for support provided to new-immigrant scientists. This research was supported in part by the James Franck Program in Laser Matter Interaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Schechter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgin, B., Bulatov, V. & Schechter, I. Application of synchronous fluorescence to parchment characterization. Anal Bioanal Chem 395, 2151–2159 (2009). https://doi.org/10.1007/s00216-009-3065-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3065-5

Keywords

Navigation