Skip to main content
Log in

Ice chromatography: current progress and future developments

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ice chromatography, in which water-ice particles are employed as a chromatographic stationary phase, has proven an efficient technique for probing the solution/ice interface. The preparation of fine ice particles has allowed us to not only obtain higher-resolution separation but also investigate the molecular processes occurring on the ice surface in more detail. Chromatographic investigations have revealed that two or more hydrogen bonds are simultaneously formed between a solute and the dangling bonds on the ice surface when the solute gives measurable retention. Several compounds, including estrogens, amino acids, and acyclic polyethers, have been successfully separated by ice chromatography with a hexane-based mobile phase. In addition, this method effectively probes the surface melting of the ice stationary phase and the liquid phase that coexists with water ice at thermodynamic equilibrium. The thickness of the surface liquid layer and the size of the liquid phase that grows inside an ice particle have been evaluated. The perspectives of this method are also discussed.

Ice chromatographic separation of dyes in black ink

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dorsey JG, Dill KA (1989) Chem Rev 89:331–346

    Article  CAS  Google Scholar 

  2. Okada T (1990) Macromolecules 23:4216–4219

    Article  CAS  Google Scholar 

  3. Okada T, Sugaya Y (2001) Anal Chem 73:3051–3058

    Article  CAS  Google Scholar 

  4. Shibukawa M, Takazawa Y, Saitoh K (2007) Anal Chem 79:6279–6286

    Article  CAS  Google Scholar 

  5. Kang SH, Shortreed MR, Yeung ES (2001) Anal Chem 73:1091–1099

    Article  CAS  Google Scholar 

  6. Petrenko VF, Whitworth RW (2006) Physics of ice. Oxford University Press, Oxford

    Google Scholar 

  7. Wierzbicki A, Knight CA, Salter EA, Henderson CN, Madura JD (2008) Cryst Growth Des 8:3420–3429

    Google Scholar 

  8. Nada H, Furukawa Y (2008) J Phys Chem B 112:7111–7119

    Article  CAS  Google Scholar 

  9. Nutt DR, Smith JC (2008) J Am Chem Soc 130:13066–13073

    Article  CAS  Google Scholar 

  10. Nobekawa T, Hagiwara Y (2008) Mol Simulation 34:591–610

    Article  Google Scholar 

  11. Sadtchenko V, Ewing GE (2002) J Chem Phys 116:4686–4697

    Article  CAS  Google Scholar 

  12. Ikeda-Fukazawa T, Kawamura K (2004) J Chem Phys 120:1395–1401

    Article  CAS  Google Scholar 

  13. Kahan TF, Reid JP, Donaldson DJ (2007) J Phys Chem A 111:11006–11012

    Article  CAS  Google Scholar 

  14. Okada T (2008) Chromatography 29:1–6

    CAS  Google Scholar 

  15. Tasaki Y, Okada T (2008) Bunseki Kagaku 57:921–935

    Article  Google Scholar 

  16. Tasaki Y, Okada T (2006) Anal Chem 78:4155–4160

    Article  CAS  Google Scholar 

  17. Tasaki Y, Okada T (2008) J Chromatogr A 1189:72–76

    Article  CAS  Google Scholar 

  18. Tasaki Y, Okada T (2009) Anal Chem 81:890–897

    Article  CAS  Google Scholar 

  19. Tasaki Y, Okada T (2008) J Phys Chem C 112:2618–2623

    Article  CAS  Google Scholar 

  20. Tasaki Y, Okada T (2009) Anal Sci 25:177–181

    Article  CAS  Google Scholar 

  21. Supatashvili GD, Kartvelistvili VG (1986) Bull Georgian Acad Sci 12:38–43

    CAS  Google Scholar 

  22. Supatashvili GD, Kaviladze MSh, Barnov BA (1987) Bull Acad Sci Georgian SSR 125:329–332

    CAS  Google Scholar 

  23. Supatashvili GD (1981) Geochemistry 11:1734–1741

    Google Scholar 

  24. Dasgupta PK, Mo Y (1997) Anal Chem 69:4079–4081

    Article  CAS  Google Scholar 

  25. Sugiya K, Harada M, Okada T (2009) Lab Chip 9:1037–1039

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, T., Tasaki, Y. Ice chromatography: current progress and future developments. Anal Bioanal Chem 396, 221–227 (2010). https://doi.org/10.1007/s00216-009-3050-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3050-z

Keywords

Navigation