Advertisement

Analytical and Bioanalytical Chemistry

, Volume 396, Issue 1, pp 221–227 | Cite as

Ice chromatography: current progress and future developments

  • Tetsuo Okada
  • Yuiko Tasaki
Trends

Abstract

Ice chromatography, in which water-ice particles are employed as a chromatographic stationary phase, has proven an efficient technique for probing the solution/ice interface. The preparation of fine ice particles has allowed us to not only obtain higher-resolution separation but also investigate the molecular processes occurring on the ice surface in more detail. Chromatographic investigations have revealed that two or more hydrogen bonds are simultaneously formed between a solute and the dangling bonds on the ice surface when the solute gives measurable retention. Several compounds, including estrogens, amino acids, and acyclic polyethers, have been successfully separated by ice chromatography with a hexane-based mobile phase. In addition, this method effectively probes the surface melting of the ice stationary phase and the liquid phase that coexists with water ice at thermodynamic equilibrium. The thickness of the surface liquid layer and the size of the liquid phase that grows inside an ice particle have been evaluated. The perspectives of this method are also discussed.

Figure

Ice chromatographic separation of dyes in black ink

Keywords

Water ice Liquid phase coexisting with ice Separation Interface Quasi-liquid layer 

References

  1. 1.
    Dorsey JG, Dill KA (1989) Chem Rev 89:331–346CrossRefGoogle Scholar
  2. 2.
    Okada T (1990) Macromolecules 23:4216–4219CrossRefGoogle Scholar
  3. 3.
    Okada T, Sugaya Y (2001) Anal Chem 73:3051–3058CrossRefGoogle Scholar
  4. 4.
    Shibukawa M, Takazawa Y, Saitoh K (2007) Anal Chem 79:6279–6286CrossRefGoogle Scholar
  5. 5.
    Kang SH, Shortreed MR, Yeung ES (2001) Anal Chem 73:1091–1099CrossRefGoogle Scholar
  6. 6.
    Petrenko VF, Whitworth RW (2006) Physics of ice. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Wierzbicki A, Knight CA, Salter EA, Henderson CN, Madura JD (2008) Cryst Growth Des 8:3420–3429Google Scholar
  8. 8.
    Nada H, Furukawa Y (2008) J Phys Chem B 112:7111–7119CrossRefGoogle Scholar
  9. 9.
    Nutt DR, Smith JC (2008) J Am Chem Soc 130:13066–13073CrossRefGoogle Scholar
  10. 10.
    Nobekawa T, Hagiwara Y (2008) Mol Simulation 34:591–610CrossRefGoogle Scholar
  11. 11.
    Sadtchenko V, Ewing GE (2002) J Chem Phys 116:4686–4697CrossRefGoogle Scholar
  12. 12.
    Ikeda-Fukazawa T, Kawamura K (2004) J Chem Phys 120:1395–1401CrossRefGoogle Scholar
  13. 13.
    Kahan TF, Reid JP, Donaldson DJ (2007) J Phys Chem A 111:11006–11012CrossRefGoogle Scholar
  14. 14.
    Okada T (2008) Chromatography 29:1–6Google Scholar
  15. 15.
    Tasaki Y, Okada T (2008) Bunseki Kagaku 57:921–935CrossRefGoogle Scholar
  16. 16.
    Tasaki Y, Okada T (2006) Anal Chem 78:4155–4160CrossRefGoogle Scholar
  17. 17.
    Tasaki Y, Okada T (2008) J Chromatogr A 1189:72–76CrossRefGoogle Scholar
  18. 18.
    Tasaki Y, Okada T (2009) Anal Chem 81:890–897CrossRefGoogle Scholar
  19. 19.
    Tasaki Y, Okada T (2008) J Phys Chem C 112:2618–2623CrossRefGoogle Scholar
  20. 20.
    Tasaki Y, Okada T (2009) Anal Sci 25:177–181CrossRefGoogle Scholar
  21. 21.
    Supatashvili GD, Kartvelistvili VG (1986) Bull Georgian Acad Sci 12:38–43Google Scholar
  22. 22.
    Supatashvili GD, Kaviladze MSh, Barnov BA (1987) Bull Acad Sci Georgian SSR 125:329–332Google Scholar
  23. 23.
    Supatashvili GD (1981) Geochemistry 11:1734–1741Google Scholar
  24. 24.
    Dasgupta PK, Mo Y (1997) Anal Chem 69:4079–4081CrossRefGoogle Scholar
  25. 25.
    Sugiya K, Harada M, Okada T (2009) Lab Chip 9:1037–1039Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of ChemistryTokyo Institute of TechnologyTokyoJapan

Personalised recommendations