Skip to main content

On-line ionic imprinted polymer selective solid-phase extraction of nickel and lead from seawater and their determination by inductively coupled plasma-optical emission spectrometry

Abstract

Nickel(II) and lead(II) ionic imprinted 8-hydroxyquinoline polymers were synthesized by a precipitation polymerization technique and were used as selective solid phase extraction supports for the determination of nickel and lead in seawater by flow injection solid phase extraction on-line inductively coupled plasma-optical emission spectrometry. An optimum loading flow rate of 2.25 mL min−1 for 2 min and an elution flow rate of 2.25 mL min−1 for 1 min gave an enrichment factor of 15 for nickel. However, a low dynamic capacity and/or rate for adsorption and desorption was found for lead ionic imprinted polymer and a flow rate of 3.00 mL min−1 for 4-min loading and a flow rate of 2.25 mL min−1 for 1-min elution gave a enrichment factor of 5. The limit of detection was 0.33 µg L−1 for nickel and 1.88 µg L−1 for lead, with a precision (n = 11) of 8% (2.37 µg Ni L−1) for nickel and 11% (8.38 µg Pb L−1) for lead. Accuracy was also assessed by analyzing SLEW-3 (estuarine water) and TM-24 (lake water) certified reference materials, and the values determined were in good agreement with the certified concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Merian E (ed) (1991) Metals and their compounds in the environment. VCH, New York

    Google Scholar 

  2. 2.

    Bermejo-Barrera P, Moreda-Piñeiro J, Moreda-Piñeiro A, Bermejo-Barrera A (1998) Anal Chim Acta 368:281–289

    Article  CAS  Google Scholar 

  3. 3.

    European Council (1979) Off J Eur Community L 281

  4. 4.

    Nickson RA, Hill SJ, Worsfold PJ (1995) Anal Proc 32:387–395

    CAS  Google Scholar 

  5. 5.

    Fritz JS (1999) Analytical solid phase extraction. Wiley, New York

    Google Scholar 

  6. 6.

    Abbasse G, Ouddane B, Fischer JC (2002) J Anal At Spectrom 17:1354–1358

    Article  CAS  Google Scholar 

  7. 7.

    Skinner CD, Salin ED (2003) J Anal At Spectrom 18:495–500

    Article  CAS  Google Scholar 

  8. 8.

    Otero-Romaní J, Moreda-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera P (2005) Anal Chim Acta 536:213–218

    Article  Google Scholar 

  9. 9.

    Ersöz A, Say R, Denizli A (2004) Anal Chim Acta 502:91–97

    Article  Google Scholar 

  10. 10.

    Martin-Esteban A (2001) Fresenius J Anal Chem 370:795–802

    Article  CAS  Google Scholar 

  11. 11.

    Rao TP, Daniel S, Gladis JM (2004) Trends Anal Chem 23:28–35

    Article  Google Scholar 

  12. 12.

    Rao TP, Kala R, Daniel S (2006) Anal Chim Acta 578:105–116

    Article  CAS  Google Scholar 

  13. 13.

    Daniel S, Gladis JM, Rao TP (2003) Anal Chim Acta 488:173–182

    Article  CAS  Google Scholar 

  14. 14.

    Liu Y, Chang X, Yang D, Guo Y, Meng S (2005) Anal Chim Acta 538:85–91

    Article  CAS  Google Scholar 

  15. 15.

    Lu YK, Yan XP (2004) Anal Chem 76:453–457

    Article  CAS  Google Scholar 

  16. 16.

    Biju VM, Gladis JM, Rao TP (2003) Anal Chim Acta 478:43–51

    Article  CAS  Google Scholar 

  17. 17.

    Kala R, Biju VM, Rao TP (2005) Anal Chim Acta 549:51–58

    Article  CAS  Google Scholar 

  18. 18.

    Biju VM, Gladis JM, Rao TP (2003) Talanta 60:747–754

    Article  CAS  Google Scholar 

  19. 19.

    Kala R, Rao TP (2006) Sep Sci Technol 41:233–246

    Article  Google Scholar 

  20. 20.

    Daniel S, Babu PEJ, Rao TP (2005) Talanta 65:441–452

    Article  CAS  Google Scholar 

  21. 21.

    Gladis JM, Rao TP (2003) Anal Lett 36:2107–2121

    Article  CAS  Google Scholar 

  22. 22.

    Gladis JM, Rao TP (2004) Mikrochim Acta 146:251–258

    CAS  Google Scholar 

  23. 23.

    Metilda P, Gladis JM, Rao TP (2004) Anal Chim Acta 512:63–73

    Article  CAS  Google Scholar 

  24. 24.

    Praveen RS, Daniel S, Rao TP (2005) Talanta 66:513–520

    Article  CAS  Google Scholar 

  25. 25.

    Otero-Romaní J, Moreda-Piñeiro A, Bermejo-Barrera P, Martin-Esteban A (2008) Anal Chim Acta 630:1–9

    Google Scholar 

  26. 26.

    Zhang N, Hu B, Huang C (2007) Anal Chim Acta 597:12–18

    Article  CAS  Google Scholar 

  27. 27.

    Walas S, Tobiasz A, Gawin M, Trzewik B, Strojny M, Mrowiec H (2008) Talanta 76:96–101

    Article  CAS  Google Scholar 

  28. 28.

    Wulff G, Gross T, Schonfeld R, Schrader T, Kristen C (1998) In: Bartsch RA, Maeda M (eds) Molecular and ionic recognition with imprinted polymers. American Chemical Society, Washington

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pilar Bermejo-Barrera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

García-Otero, N., Teijeiro-Valiño, C., Otero-Romaní, J. et al. On-line ionic imprinted polymer selective solid-phase extraction of nickel and lead from seawater and their determination by inductively coupled plasma-optical emission spectrometry. Anal Bioanal Chem 395, 1107–1115 (2009). https://doi.org/10.1007/s00216-009-3044-x

Download citation

Keywords

  • On-line solid-phase extraction
  • Ionic imprinted polymer
  • Nickel
  • Lead
  • Seawater
  • Inductively coupled plasma-optical emission spectrometry