Advertisement

Analytical and Bioanalytical Chemistry

, Volume 395, Issue 4, pp 1033–1046 | Cite as

Measuring the optical chirality of molecular aggregates at liquid–liquid interfaces

  • Hitoshi Watarai
  • Kenta Adachi
Review

Abstract

Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid–liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid–liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.

Keywords

Liquid–liquid interface Interfacial aggregation Optical chirality Centrifugal liquid membrane method Porphyrin and phthalocyanine 

Notes

Acknowledgements

This study was financially supported by a Grant-in-Aid for Scientific Research (S) (No. 16105002) and was also supported in part by the Global COE program of Osaka University and the “Yuragi project” of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. 1.
    Imae T (ed)(2007) Advanced chemistry of monolayers at interfaces, 14. Elsevier, Amsterdam, pp 277–308Google Scholar
  2. 2.
    Ohashi A, Tsukahara S, Watarai H (2003) Langmuir 19:4645–4651CrossRefGoogle Scholar
  3. 3.
    Watarai H, Oyama H (2008) Anal Chem 80:8348–8353CrossRefGoogle Scholar
  4. 4.
    Watarai H, Teramae N, Sawada T (eds)(2005) Interfacial nanochemistry. Kluwer/Plenum, New YorkGoogle Scholar
  5. 5.
    Wada S, Fujiwara K, Monjushiro H, Watarai H (2004) Anal Sci 20:1489–1491CrossRefGoogle Scholar
  6. 6.
    Kobayashi S, Hamada T, Manabe K (2002) J Am Chem Soc 124:5640–5641CrossRefGoogle Scholar
  7. 7.
    Wagnière GH (2007) On chirality and the universal asymmetry. Wiley-VCH/Helvetica Chimica Acta, ZürichGoogle Scholar
  8. 8.
    Nagatani H, Watarai H (1999) Chem Lett 28:701–702Google Scholar
  9. 9.
    Ohashi A, Watarai H (2003) Chem Lett 32:218–219CrossRefGoogle Scholar
  10. 10.
    Hicks JM, Petralli-Mallow T, Byers JD (1994) Faraday Discuss 99:341Google Scholar
  11. 11.
    Corn RM, Higgins DA (1994) Chem Rev 94:107CrossRefGoogle Scholar
  12. 12.
    Brevet P-F (1997) Surface second harmonic generation. Presses Polytechniques et Universitaries Romandes, LausanneGoogle Scholar
  13. 13.
    Steel WH, Walker RA (2003) J Am Chem Soc 125:1132CrossRefGoogle Scholar
  14. 14.
    Nagatani H, Samec Z, Brevet P-F, Fermin DJ, Girault HH (2003) J Phys Chem B 107:786CrossRefGoogle Scholar
  15. 15.
    Verbiest T, Kauranen M, Persoons A (1999) J Mater Chem 9:2005CrossRefGoogle Scholar
  16. 16.
    Crawford MJ, Haslam S, Probert JM, Gruzdkov YA, Frey JG (1994) Chem Phys Lett 229:260Google Scholar
  17. 17.
    Wampler RD, Zhou M, Thompson DH, Simpson GJ (2006) J Am Chem Soc 128:10994–10995CrossRefGoogle Scholar
  18. 18.
    Fujiwara K, Monjushiro H, Watarai H (2004) Chem Phys Lett 94:349–353CrossRefGoogle Scholar
  19. 19.
    Tokunaga D, Takechi H, Yin J-H, Watarai H, Ohde T (2009) Anal Sci 25:311–314CrossRefGoogle Scholar
  20. 20.
    Matsugaki A, Takechi H, Monjushiro H, Watarai H (2008) Anal Sci 24:297–300CrossRefGoogle Scholar
  21. 21.
    Barron LD, Bogaard MP, Buckingham AD (1973) J Am Chem Soc 95:603CrossRefGoogle Scholar
  22. 22.
    Barron LD, Bogaard MP, Buckingham AD (1973) Nature 241:113CrossRefGoogle Scholar
  23. 23.
    Holzwarth G, Hsu EC, Mosher HS, Faulkner TR, Moskowitz A (1974) J Am Chem Soc 96:251CrossRefGoogle Scholar
  24. 24.
    Nafie LA, Cheng JC, Stephens PJ (1975) J Am Chem Soc 97:3842CrossRefGoogle Scholar
  25. 25.
    Hug W, Kint S, Bailey GF, Scherer JR (1975) J Am Chem Soc 97:5589CrossRefGoogle Scholar
  26. 26.
    Atkins PW, Barron LD (1969) Mol Phys 16:453CrossRefGoogle Scholar
  27. 27.
    Blum L, Frisch HL (1970) J Chem Phys 52:4379CrossRefGoogle Scholar
  28. 28.
    Barron LD, Buckingham AD (1971) Mol Phys 20:1111CrossRefGoogle Scholar
  29. 29.
    Hug W, Hangartner GJ (1999) Raman Spectrosc 30:841CrossRefGoogle Scholar
  30. 30.
    Hug W (2003) Appl Spectrosc 57:1CrossRefGoogle Scholar
  31. 31.
    Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371–392Google Scholar
  32. 32.
    Harada N, Nakanishi K (1983) Circular dichroic spectroscopy–exciton coupling in organic chemistry. Oxford University Press, OxfordGoogle Scholar
  33. 33.
    Kobayashi T (ed)(1996) J-aggregates. World Scientific, SingaporeGoogle Scholar
  34. 34.
    Krois D, Brinker UH (1998) J Am Chem Soc 120:11627–11632Google Scholar
  35. 35.
    Grabner G, Monti S, Marconi G, Mayer B, Klein C, Köhler G (1996) J Phys Chem 100:20068–20075Google Scholar
  36. 36.
    Murphy RS, Barros TC, Mayer B, Marconi G, Bohne C (2000) Langmuir 16:8780–8788Google Scholar
  37. 37.
    Mayer B, Zhang X, Nau WM, Marconi G (2001) J Am Chem Soc 123:5240–5248Google Scholar
  38. 38.
    Bakirci H, Zhang X, Nau WM (2005) J Org Chem 70:39–46Google Scholar
  39. 39.
    Tinoco I Jr (1962) Advan Chem Phys 4:113–160Google Scholar
  40. 40.
    Kirkwood JG (1937) J Chem Phys 5:479–491Google Scholar
  41. 41.
    Wada S, Fujiwara K, Monjushiro H, Watarai H (2007) J Phys Condens Matter 19:375105Google Scholar
  42. 42.
    Ribo JM, Crusats J, Sagues F, Claret J, Rubires R (2001) Science 292:2063Google Scholar
  43. 43.
    Adachi K, Chayama K, Watarai H (2006) Langmuir 22:1630–1639Google Scholar
  44. 44.
    Leznoff CC, Lever ABP (eds)(1989–1996) Phthalocyanines: properties and applications, vols 1–4. VCH, New YorkGoogle Scholar
  45. 45.
    Okura I (2000) Photosensitization of porphyrins and phthalocyanines. Gordon and Breach, AmsterdamGoogle Scholar
  46. 46.
    Engelkamp H, Middelbeek S, Nolte RJM (1999) Science 284:785–788Google Scholar
  47. 47.
    Samorí P, Engelkamp H, de Witte P, Rowan AE, Nolte RJM, Rabe JP (2001) Angew Chem Int Ed 40:2348–2350Google Scholar
  48. 48.
    Adachi K, Watarai H (2006) New J Chem 30:343–348Google Scholar
  49. 49.
    Adachi K, Watarai H (2004) Bull Chem Soc Jpn 77:2011–2020Google Scholar
  50. 50.
    Adachi K, Watarai H (2005) J Mater Chem 15:4701–4710Google Scholar
  51. 51.
    Adachi K, Chayama K, Watarai H (2005) Soft Mater 1:292–302Google Scholar
  52. 52.
    Ho T-L (1977) Hard and soft acids and bases: principles in organic chemistry. Academic, New YorkGoogle Scholar
  53. 53.
    Baguley ME, France H, Linstead RP, Whalley M (1955) J Chem Soc 3521–3525Google Scholar
  54. 54.
    Adachi K, Chayama K, Watarai H (2006) Chirality 18:599–608Google Scholar
  55. 55.
    Adachi K, Watarai H (2006) Eur Chem J 12:4249–4260Google Scholar
  56. 56.
    Bender ML, Komiyama M (1978) Cyclodextrin chemistry: reactivity and structure, concepts in organic chemistry. Springer, New YorkGoogle Scholar
  57. 57.
    Szejtli J (1988) Cyclodextrin technology (Topics in Inclusion Science). Kluwer, DordrechtGoogle Scholar
  58. 58.
    de la Torre G, Vázquez P, Agulló-López F, Torres T (2004) Chem Rev 104:3723–3750Google Scholar
  59. 59.
    Martín G, Rojo G, Agulló-López F, Ferro VR, Vega JMG, Martínez-Díaz MV, Torres T, Ledoux I, Zyss J (2002) J Phys Chem B 106:13139–13145Google Scholar
  60. 60.
    Adachi K, Watarai H (2006) Anal Chem 78:6540–6846Google Scholar
  61. 61.
    Kratochwal NA, Huber W, Müller F, Kansy M, Gerber PR (2002) Biochem Pharmacol 64:1355–1374 (and references therein)Google Scholar
  62. 62.
    Kragh-Hansen U, Minchiotti L, Brennan SO, Sugita O (1990) Eur J Biochem 193:169–174Google Scholar
  63. 63.
    Watanabe S, Sato T (1996) Biochim Biophys Acta 1289:385–396Google Scholar
  64. 64.
    Peters T Jr (1995) All about albumin: biochemistry, genetics and medical applications. Academic, San DiegoGoogle Scholar
  65. 65.
    Yamasaki K, Maruyama T, Takadate A, Suenaga A, Kragh-Hansen U, Otagiri M (2004) J Pharm Sci 93:3004–3012Google Scholar
  66. 66.
    Takamura N, Haruta A, Kodama H, Tsuruoka M, Yamasaki KT, Suenaga A, Otagiri M (1996) Pharm Res 13:1015–1019Google Scholar
  67. 67.
    Spector AA, Santos EC, Ashbrook JD, Fletcher JE (1973) Ann NY Acad Sci 226:247–258Google Scholar
  68. 68.
    Nerli B, Romanini D, Pico G (1997) Chem Biol Interact 104:179–202Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of ScienceOsaka UniversityOsakaJapan
  2. 2.Department of Environmental Science & Engineering, Graduate School of Science & EngineeringYamaguchi UniversityYamaguchiJapan

Personalised recommendations